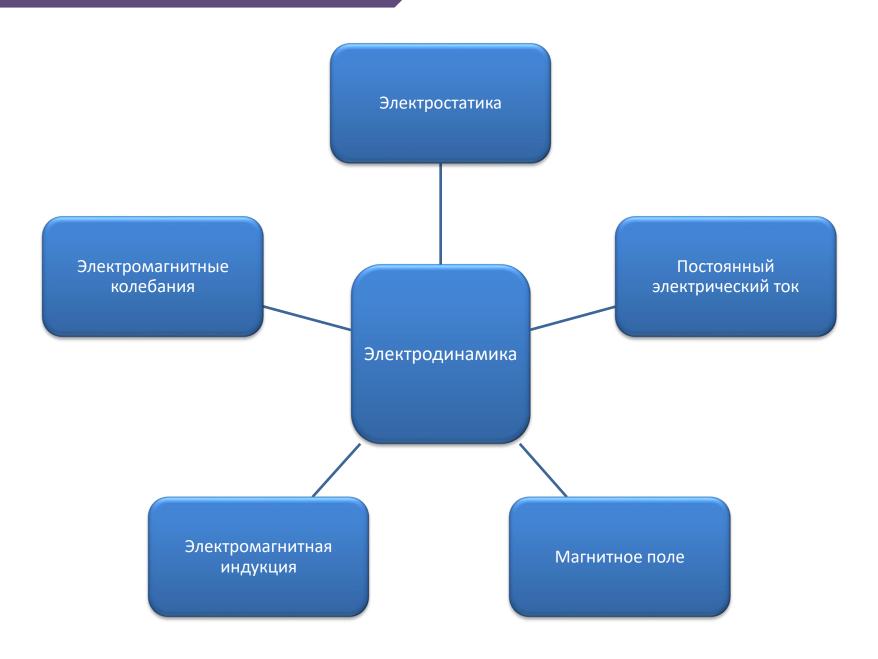
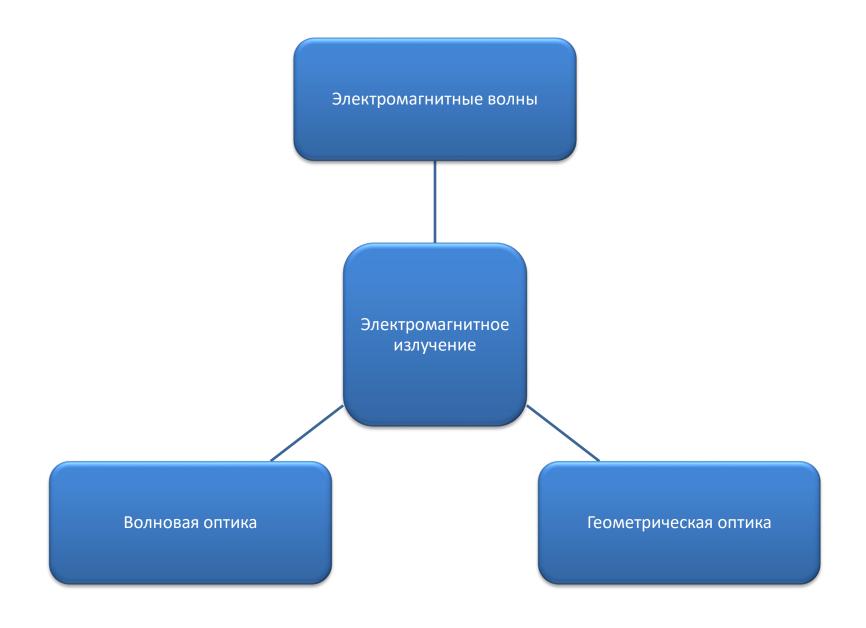
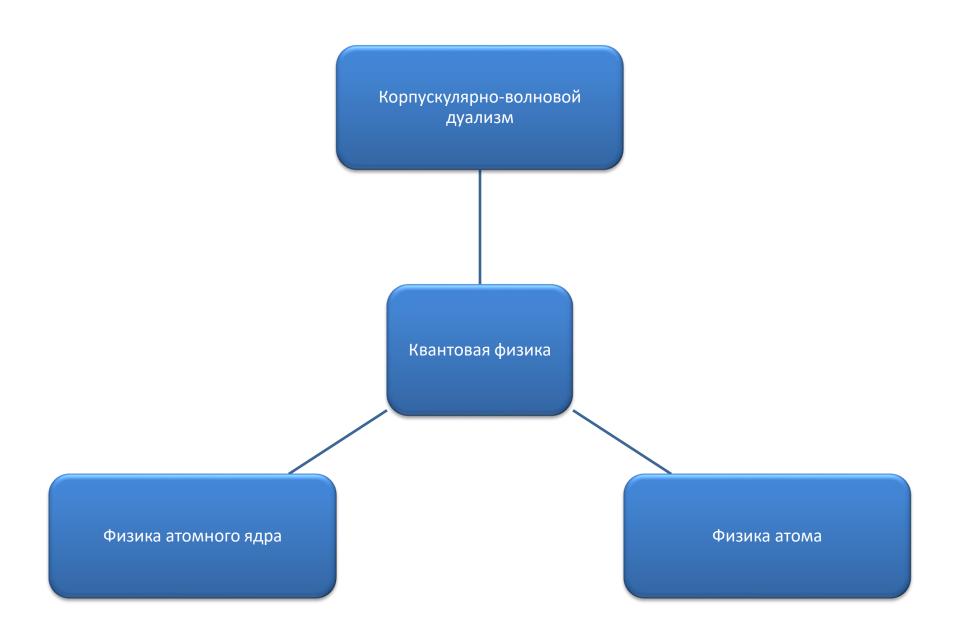

# ИНТЕЛЛЕКТ-КАРТА ПО ФИЗИКЕ ДЛЯ ПОДГОТОВКИ К ОГЭ И ЕГЭ

## ВЕРСИЯ К2


http://www.workingmemory.ru/


ОТКРЫТЬ









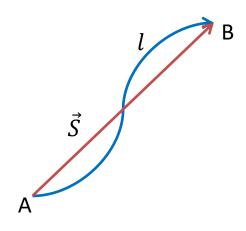





#### ОСНОВНЫЕ ПОНЯТИЯ

**Траектория** — кривая, вдоль которой движется материальная точка.

Путь – длина траектории.


**Перемещение** — вектор, соединяющий начальную и конечную точки траектории.

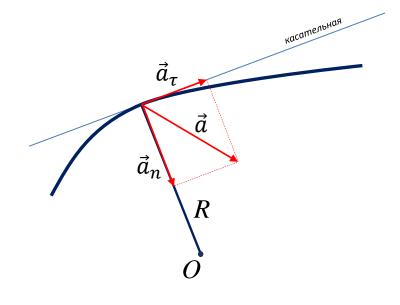
$$v_{
m cp} = rac{l}{t}$$
 — средняя скорость по пути

$$ec{v}_{
m cp} = rac{ec{S}}{t}$$
 — средняя скорость по перемещению

$$\vec{v} = \frac{d\vec{S}}{dt}$$
 — мгновенная скорость

$$\vec{a} = \frac{d\vec{v}}{dt}$$
 - ускорение




## **УСКОРЕНИЕ**

$$\vec{a} = \frac{d\vec{v}}{dt} = \vec{a}_n + \vec{a}_\tau$$

$$a = \sqrt{a_n^2 + a_\tau^2}$$

$$a_{\tau} = \frac{dv}{dt}$$

$$a_n = \frac{v^2}{R} = \omega^2 R$$



## РАВНОМЕРНОЕ ДВИЖЕНИЕ ВДОЛЬ ПРЯМОЙ

$$\vec{a} = 0$$

$$\vec{v} = const$$

$$x(t) = x_0 + v_0 t$$

$$v = \frac{x_2 - x_1}{t_2 - t_1}$$

$$S = v \cdot t$$

## РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ ВДОЛЬ ПРЯМОЙ

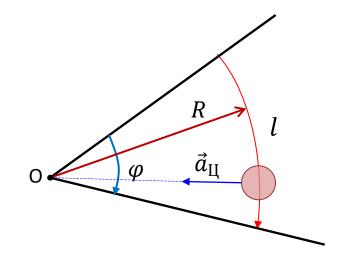
$$\vec{a} = const$$

$$\begin{cases} \upsilon(t) = \upsilon_0 + at \\ x(t) = x_0 + \upsilon_0 t + \frac{at^2}{2} \end{cases}$$

$$a = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

$$\Delta t = t_2 - t_1 = \frac{v_2 - v_1}{a}$$

$$v_{\rm cp} = \frac{S}{t} = \frac{v_1 + v_2}{2}$$


$$S = v_{\rm cp} \cdot \Delta t = \frac{v_2^2 - v_1^2}{2a}$$

## ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ

$$arphi = rac{l}{R}$$
 — угол в радианах

$$\omega = \frac{d \varphi}{dt} = \frac{v}{R}$$
 — угловая скорость  $[c^{-1}]$ 

$$\varepsilon = \frac{d\omega}{dt} = \frac{a_{\tau}}{R}$$
 — угловое ускорение [c<sup>-2</sup>]



Уравнение движения:

$$\begin{cases} \omega = \omega_0 + \varepsilon t \\ \varphi = \varphi_0 + \omega_0 t + \frac{\varepsilon t^2}{2} \end{cases}$$

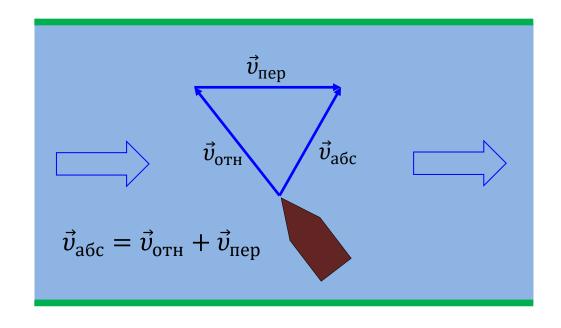

 $T=rac{2\pi}{\omega}$  — период обращения

$$u = \frac{1}{T}$$
 — частота обращения (Гц)

Центростремительное (нормальное) ускорение:  $a_{\rm II} = \frac{v^2}{R} = \omega^2 R$ 

Механика

$$\begin{cases} \upsilon_{x}(t) = \upsilon_{0} \cdot \cos \alpha \\ x(t) = \upsilon_{0} \cdot \cos \alpha \cdot t \\ \upsilon_{y}(t) = \upsilon_{0} \cdot \sin \alpha - gt \end{cases}$$
$$y(t) = \upsilon_{0} \cdot \sin \alpha \cdot t - \frac{gt^{2}}{2}$$



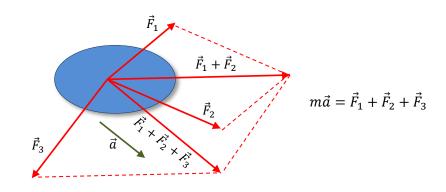

$$v_y = 0 \Rightarrow t_{ymax} = \frac{v_0 \sin \alpha}{g}, y_{max} = \frac{v_0^2 \sin^2 \alpha}{2g}$$

$$y(t) = 0 \Rightarrow t_{xmax} = \frac{2v_0 \sin \alpha}{g}, x_{max} = \frac{v_0^2 \sin 2\alpha}{g}$$

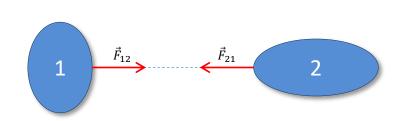
## ЗАКОН СЛОЖЕНИЯ СКОРОСТЕЙ (в классической механике Ньютона)

Абсолютная скорость (скорость лодки относительно берега) равна сумме относительной скорости (скорости лодки относительно воды) и переносной скорости (скорости воды относительно берега).




Скорость второго тела равна скорости второго тела относительно первого плюс скорость первого:

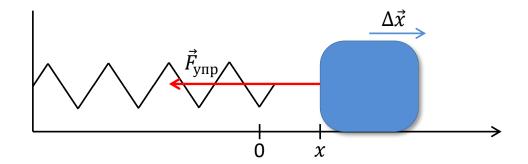
$$\vec{v}_2 = \vec{v}_{21} + \vec{v}_1$$


#### ЗАКОНЫ НЬЮТОНА

**Первый закон Ньютона.** Существуют такие системы отсчёта, называемые инерциальными, относительно которых тело находится в состоянии покоя или равномерного прямолинейного движения, если векторная сумма сил, действующих на него, равна нулю.

**Второй закон Ньютона.** Произведение массы тела на его ускорение равно векторной сумме всех действующих на него сил:  $m\vec{a}=\sum \vec{F}.$ 




**Третий закон Ньютона.** Два тела действуют друг на друга силами, равными по величине, но направленными в противоположные стороны вдоль прямой, соединяющей точки приложения этих сил:  $\vec{F}_{12} = -\vec{F}_{21}$ .



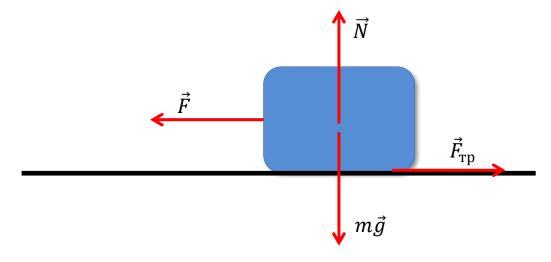
#### СИЛА УПРУГОСТИ

**Сила упругости** — сила, возникающая при деформации тела и направленная противоположно направлению смещения частиц при деформации.

**Закон Гука.** Модуль силы упругости  $F_{\rm ynp}$ , возникающей при деформации тела, пропорционален его удлинению  $\Delta x$ :



$$\vec{F}_{y\pi p} = -k\Delta \vec{x}$$

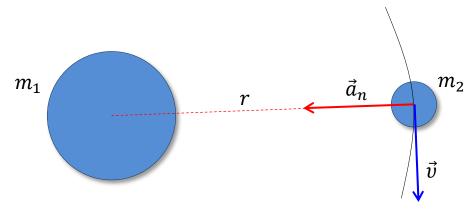

$$F_{\rm ynp} = k\Delta x$$

$$k$$
 – жесткость  $[{}^{\rm H}\!/_{\scriptscriptstyle {\rm M}}]$ 

Потенциальная энергия упругой деформации  $E_p=rac{k\cdot\Delta x^2}{2}$ 

#### СИЛА ТРЕНИЯ

**Сила трения** — сила, возникающая при соприкосновении поверхностей тел, препятствующая их относительному перемещению, направленная вдоль поверхности соприкосновения.




Сила трения покоя  $\vec{F}_{ ext{Tp}} = -\vec{F}$  ,  $F_{ ext{Tp}} \leq \mu N$  , где  $\mu$  — коэффициент трения

Сила трения скольжения  $F_{
m Tp}=\mu N$ , где  $\mu$  — коэффициент трения

#### ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ

Между любыми двумя материальными точками действует сила взаимного притяжения, пропорциональная произведению масс этих точек и обратно пропорциональная квадрату расстояния между ними:  $F_g = G \frac{m_1 m_2}{r^2}$ , где  $G = 6.67 \cdot 10^{-11} \ ^{\text{H} \cdot \text{M}^2} /_{\text{K}\Gamma^2}$  — гравитационная постоянная, r — расстояние между материальными точками или центрами сферически симметричных шаров.



$$ec{F}_g=m_2ec{a}_n$$
,  $a_n=rac{v^2}{r}$   $\Rightarrow$   $\qquad Grac{m_1m_2}{r^2}=m_2rac{v^2}{r}$   $\Rightarrow v=\sqrt{Grac{m_1}{r}}$  — первая космическая скорость

## ДВИЖЕНИЕ ПО НАКЛОННОЙ ПЛОСКОСТИ



$$m\vec{g} = \vec{F}_{gx} + \vec{F}_{gy}$$

$$F_{gx} = mg \sin \alpha$$

$$F_{gy} = -mg\cos\alpha$$

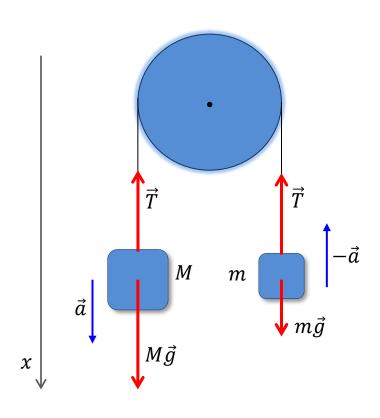
$$\vec{F}_{\rm TD} + \vec{N} + m\vec{g} = m\vec{a}$$

$$Ox: -F_{Tp} + mg \sin \alpha = ma$$

$$Oy: N - mg \cos \alpha = 0$$

Движение, если  $tg \alpha \ge \mu$ 

$$N = mg \cos \alpha$$


$$F_{\text{Tp}} = N\mu = mg\mu \cos \alpha$$

$$\alpha = \frac{-F_{\text{Tp}} + mg \sin \alpha}{m} = g(\sin \alpha - \mu \cos \alpha)$$

Покой, если  $\operatorname{tg} \alpha < \mu$ 

$$N = mg \cos \alpha$$
$$F_{\text{Tp}} = mg \sin \alpha$$
$$a = 0$$

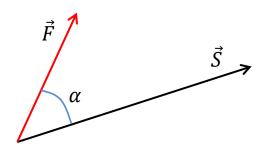
## ДВИЖЕНИЕ СВЯЗАННЫХ ТЕЛ



$$\begin{cases} \vec{T} + M\vec{g} = M\vec{a} \\ \vec{T} + m\vec{g} = -m\vec{a} \end{cases}$$

В проекциях на ось x:

$$\begin{cases} -T + Mg = Ma \\ -T + mg = -ma \end{cases}$$


$$\begin{cases} a = g \frac{M - m}{M + m} \\ T = \frac{2Mmg}{M + m} \end{cases}$$

Закон сохранения импульса

Закон сохранения механической энергии

Импульс тела и импульс силы

#### РАБОТА И КИНЕТИЧЕСАЯ ЭНЕРГИЯ



$$A = \vec{F} \cdot \vec{S} = F \cdot S \cdot \cos \alpha$$

В общем случае 
$$A=\int\limits_{(1)}^{(2)} \vec{F} d\vec{S}$$

Кинетическая энергия материальной точки или поступательно движущегося тела:  $E = \frac{mv^2}{2}$ .

## Теорема о кинетической энергии

$$F = ma = m\frac{v_2 - v_1}{\Delta t} \Rightarrow F\left(\frac{v_2 + v_1}{2}\right)\Delta t = m\left(\frac{v_2 + v_1}{2}\right)(v_2 - v_1) \Rightarrow A = F \cdot S = \frac{mv_2^2}{2} - \frac{mv_1^2}{2}$$

Приращение кинетической энергии тела равно совершенной над ним работе.

$$\frac{mv_2^2}{2} - \frac{mv_1^2}{2} = A$$

## ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ

**Потенциальная энергия** — скалярная физическая величина, характеризующая определенный вид взаимодействия в механической системе (гравитационного, электромагнитного).

**Работа** равна убыли потенциальной энергии:  $A = E_{p1} - E_{p2}$ .

Потенциальная энергия силы тяжести вблизи поверхности земли:  $E_p = mgh$ , где

m — масса тела,

 $g = 9.81 \text{ м/c}^2$  – ускорение свободного падения,

h — высота тела относительно произвольно выбранного начала отсчета.

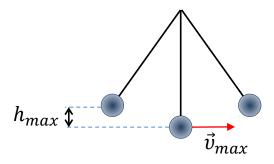
Работа силы тяжести:  $A = mgh_1 - mgh_2$ 

Потенциальная энергия силы упругости сжатой пружины  $E_p=rac{kx^2}{2}$ , где

k — жесткость пружины,

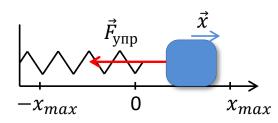
x — деформация пружины (отклонение от положения равновесия).

Работа силы упругости:  $A = \frac{kx_1^2}{2} - \frac{kx_2^2}{2}$ 


## ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

**Механическая энергия системы** — это сумма кинетической и потенциальной энергии всех ее частей:  $E_M = E_k + E_p$ .

Суммарная работа в изолированной системе, в которой действуют только консервативные силы, равна, с одной стороны, приращению кинетической энергии, с другой стороны, убыли потенциальной энергии:


$$A = E_{k2} - E_{k1} = E_{p1} - E_{p2} \Rightarrow E_{k2} + E_{p2} = E_{k1} + E_{p1} = E_M = const$$

Таким образом, в изолированной системе, в которой действуют только консервативные силы, суммарная механическая энергия сохраняется.



$$E_M = mgh_1 + \frac{mv_1^2}{2} = mgh_2 + \frac{mv_2^2}{2} = const$$

$$E_M = mgh_{max} = \frac{mv_{max}^2}{2}$$



$$E_M = \frac{kx_1^2}{2} + \frac{mv_1^2}{2} = \frac{kx_2^2}{2} + \frac{mv_2^2}{2} = const$$

$$E_M = \frac{kx_{max}^2}{2} = \frac{mv_{max}^2}{2}$$

#### ИМПУЛЬС ТЕЛА И ИМПУЛЬС СИЛЫ

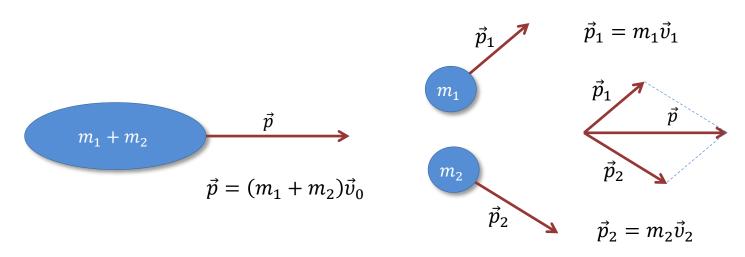
Импульс тела — векторная величина, равная произведению массы тела на скорость:

$$\vec{p} = m\vec{v}$$
.

**Импульс силы** – произведение силы на время действия:  $ec{F}\Delta t$ .

Изменение импульса тела равно импульсу силы:  $\Delta ec{p} = ec{F} \Delta t$ 

$$\Delta \vec{p} = m \Delta \vec{v} = m \frac{\Delta \vec{v}}{\Delta t} \Delta t = \vec{F} \Delta t$$


#### ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Если векторная сумма сил, действующих на систему, равна нулю, то импульс сохраняется.

Если сумма проекций сил, действующих на систему, равна нулю, то проекция импульса сохраняется.

$$\sum \vec{F} = 0 \Rightarrow \sum \vec{p} = const$$

$$\sum F_{x} = 0 \Rightarrow \sum p_{x} = const$$



$$\vec{p} = \vec{p}_1 + \vec{p}_2$$

#### УПРУГИЕ И НЕУПРУГИЕ СТОЛКНОВЕНИЯ

При абсолютно упругом столкновении сохраняется импульс и кинетическая энергия:

При абсолютно неупругом столкновении сохраняется только импульс. Кинетическая энергия частично переходит в тепло:

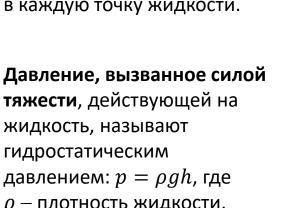


## ДАВЛЕНИЕ ЖИДКОСТИ

Давление жидкости — это сила, действующая на единицу площади поверхности со стороны жидкости:  $p = \frac{F}{s}$ . Единица давления — Паскаль. 1 Па = 1  $^{\rm H}/_{\rm M^2}$ .

Закон Паскаля: давление, создаваемое поверхностными силами, передается без изменения в каждую точку жидкости.

тяжести, действующей на

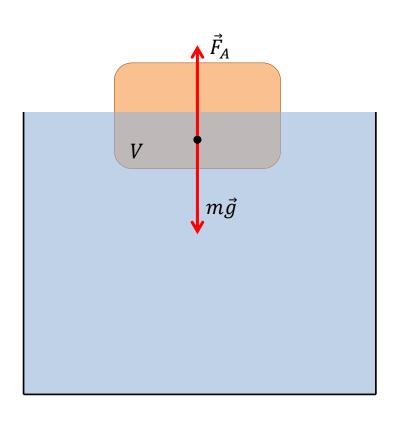

давлением:  $p = \rho g h$ , где  $\rho$  — плотность жидкости,

g — ускорение свободного

падения, h — глубина.

жидкость, называют

гидростатическим



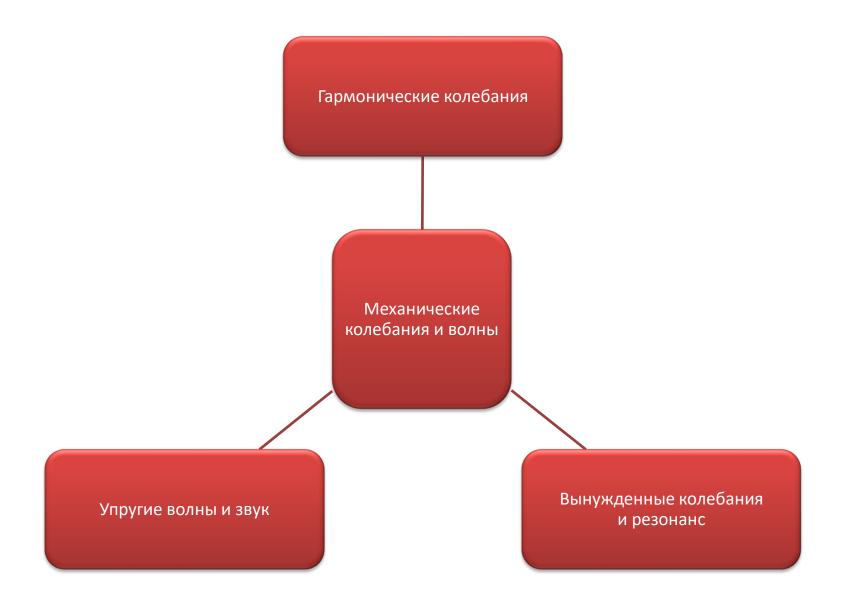

 $S_1$  $p = \frac{F_1}{S_1} = \frac{F_2}{S_2}$  $S_1 \Delta h_1 = S_2 \Delta h_2$ 

 $p_A \approx 760$  мм рт. ст.  $\approx 10^5$  Па  $\approx 1$  атм. h  $p = p_A + \rho g h$ 

## ЗАКОН АРХИМЕДА

На всякое тело, погруженное в жидкость, действует со стороны этой жидкости выталкивающая сила, равная по модулю весу вытесненной телом жидкости, направленная по вертикали вверх и приложенная к центру тяжести вытесненного объема.

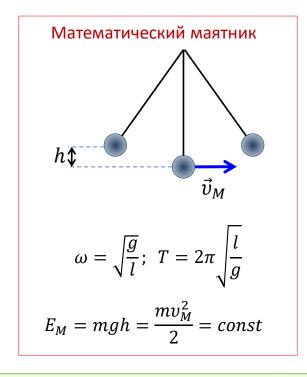



$$F_A = \rho g V$$

 $\rho$  – плотность жидкости,

V — объем вытесненной жидкости,

g – ускорение свободного падения.


$$F_A = mg$$
 – условие равновесия

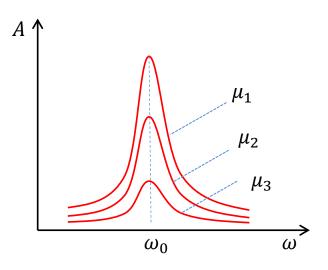


#### ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

**Гармонические колебания** — это колебания, при которых физическая величина меняется во времени по синусоидальному закону:  $x(t) = A\cos(\omega t + \varphi)$  или  $x(t) = A\sin(\omega t + \varphi)$ , где x(t) — значение колеблющейся величины в момент времени t, A — амплитуда,  $\omega$  — круговая частота  $[c^{-1}]$ ,  $\varphi$  — начальная фаза колебаний,  $(\omega t + \varphi)$  — фаза колебаний.

$$T=rac{2\pi}{\omega}$$
 — период колебаний [c]  $f=rac{1}{T}=rac{\omega}{2\pi}$  — частота [Гц]






## ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ И РЕЗОНАНС

**Вынужденные колебания** — колебания, совершаемые телом под действием внешней периодически изменяющейся силы.

- > Внешняя периодически изменяющаяся сила называется вынуждающей силой.
- > Частота установившихся вынужденных колебании равна частоте вынуждающей силы.
- Вынужденные колебания незатухающие.

Явление резонанса заключается в том, что амплитуда установившихся вынужденных колебаний достигает наибольшего значения, когда частота вынуждающей силы равна собственной частоте колебательной системы.

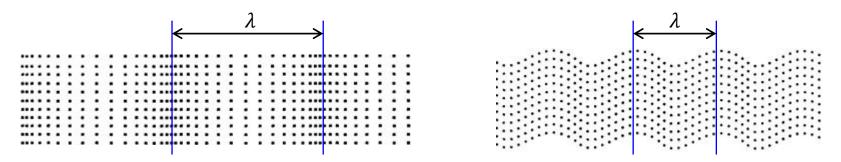


 $\omega$  – частота вынуждающей силы

 $\omega_0$  — собственная частота колебаний системы

A — амплитуда установившихся вынужденных колебаний

$$\mu_1, \mu_2, \mu_3$$
 — коэффициенты трения.


$$\mu_3 > \mu_2 > \mu_1$$

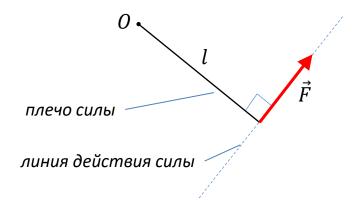
#### УПРУГИЕ ВОЛНЫ И ЗВУК

**Упругие волны** — это возмущения (отклонения частиц от положений равновесия), распространяющиеся в твердой, жидкой и газообразной средах.

- Волны, в которых колебания происходят вдоль направления распространения, называются продольными.
- Волны, в которых колебания происходят перпендикулярно направлению распространения, называются поперечными.

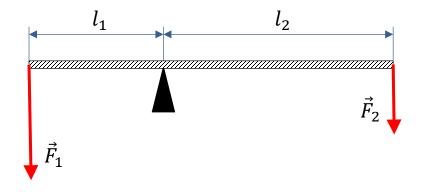
Длина волны – расстояние, на которое распространяется волна за время, равное периоду колебаний.



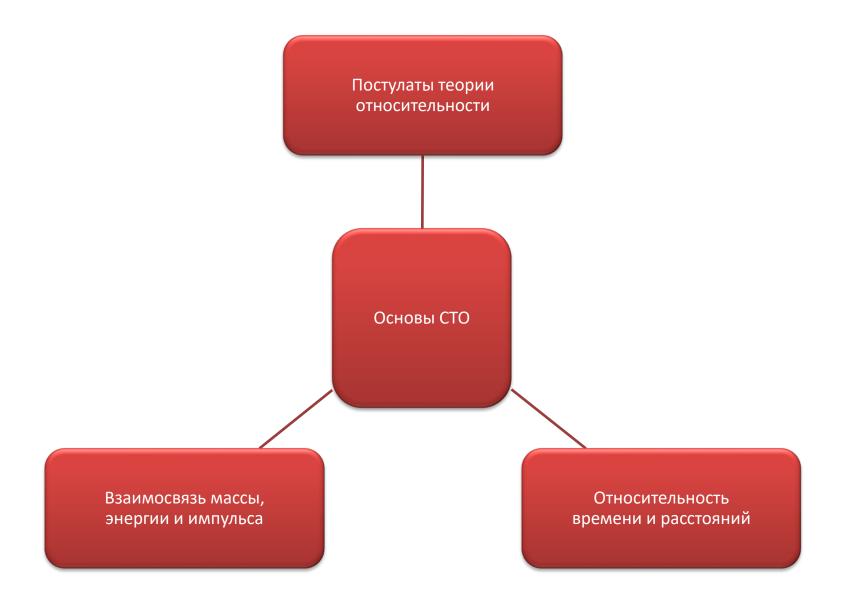

 $\lambda=vT$  — длина волны [м], v — скорость волны [м/с], T — период колебаний в волне [с],  $v=rac{1}{T}$  — частота волны [Гц].

**Звук** — упругие волны, воспринимаемые человеческим ухом, в диапазоне примерно от  $16~\Gamma$ ц до  $20~\kappa$  Гц. Волны, с частотой менее  $16~\Gamma$ ц, называют инфразвуком, более  $20~\kappa$  Гц — ультразвуком

## УСЛОВИЯ РАВНОВЕСИЯ ТВЕРДОГО ТЕЛА


- 1. Векторная сумма сил, действующих на тело, равна нулю:  $\sum \vec{F} = 0$ .
- 2. Сумма моментов всех сил относительно любой точки равна нулю:  $\sum M = 0$ .

## ОПРЕДЕЛЕНИЕ МОМЕНТА СИЛЫ




$$M = F \cdot l$$

#### УСЛОВИЕ РАВНОВЕСИЯ РЫЧАГА



$$F_1 \cdot l_1 = F_2 \cdot l_2$$



#### ПОСТУЛАТЫ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

# Первый постулат (Принцип относительности Эйнштейна)

В любой инерциальной системе любые физические явления при их тождественной постановке происходят одинаково; все законы природы и уравнения, их описывающие, инвариантны (неизменны) при переходе от одной инерциальной системы отсчета к другой.

# Второй постулат (Принцип инвариантности скорости света)

Скорость света в вакууме является величиной постоянной и одинаковой во всех инерциальных системах отсчета, она не зависит от движения источника света и наблюдателя.

## ОТНОСИТЕЛЬНОСТЬ ВРЕМЕНИ И РАССТОЯНИЙ

**Собственное время**  $au_0$  — это время, отсчитываемое по часам, движущимся вместе с телом.

Промежуток времени по часам, относительно которых тело движется:

$$\tau = \frac{\tau_0}{\sqrt{1 - v^2/c^2}}$$

**Собственная длина стержня**  $m{l}_0$  — это длина покоящегося стержня. Длина движущегося стержня:

$$l = l_0 \sqrt{1 - v^2/c^2}$$

Масса покоя  $m_0$  — это масса покоящегося тела.

Масса движущегося со скоростью v тела  $m=rac{m_0}{\sqrt{1-v^2/c^2}}$ 

Энергия покоя  $E_0 = m_0 c^2$ .

Полная энергия движущегося тела  $E = \frac{m_0 c^2}{\sqrt{1 - v^2/c^2}}$ 

Кинетическая энергия  $E_k=E-E_0=mc^2-m_0c^2=\left(rac{1}{\sqrt{1-v^2/c^2}}-1
ight)m_0c^2$ 

Релятивистский импульс  $p = mv = \frac{m_0 v}{\sqrt{1 - v^2/c^2}}$ 

Связь энергии и импульса  $E^2 = m_0^2 c^4 + p^2 c^2$ .

### ОСНОВНЫЕ ПОНЯТИЯ МОЛЕКУЛЯРНОЙ ФИЗИКИ

Постоянная Авогадро  $N_A = 6 \cdot 10^{23} \ \text{моль}^{-1}$  – число атомов в 12 граммах изотопа углерода-12.

Один моль — такое количество вещества, в котором число частиц (атомов или молекул) равно постоянной Авогадро.

Давление  $p = \frac{F}{S} [\Pi a]$  — сила, действующая на единицу площади поверхности.

Абсолютная температура  $T [K] = t[^{\circ}C] + 273 [K].$ 

### МОДЕЛЬ ИДЕАЛЬНОГО ГАЗА

| Основное уравнение молекулярно-кинетической теории<br>идеального газа                                         | $p = \frac{2}{3}n\varepsilon_{kp} = \frac{1}{3}nmv^2$ |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Уравнение Менделеева — Клапейрона                                                                             | $\frac{pV}{T} = R\nu$                                 |
| Зависимость давления газа от температуры и концентрации                                                       | p = nkT                                               |
| Средняя кинетическая энергия поступательного движения одной частицы газа (атома или молекулы)                 | $\varepsilon_{kp} = \frac{3}{2}kT$                    |
| Средняя кинетическая энергия поступательного и вращательного движения одной частицы газа (атома или молекулы) | $\varepsilon_k = \frac{i}{2} kT$                      |
| Внутренняя энергия идеального газа<br>(сумма кинетических энергий всех его частиц)                            | $U = \frac{i}{2}TR\nu = \frac{i}{2}PV$                |

p — давление [Па]; n — концентрация [ $1/{
m M}^3$ ]; V — объем [ ${
m M}^3$ ]; T — абсолютная температура [ ${
m K}$ ];  $v=rac{m}{M}$  — количество газа [моль], где m — масса газа, M — его молярная масса;

U — внутренняя энергия идеального газа;

 $arepsilon_{kp}=rac{mv^2}{2}$  — средняя кинетическая энергия поступательного движения частиц газа [Дж];

 $arepsilon_k$  — средняя кинетическая энергия поступательного и вращательного движения частиц газа [Дж];

 $R = 8.31 \; \text{Дж/(моль · K)} -$ универсальная газовая постоянная;

 $k = 1{,}38 \cdot 10^{-23}\,$  Дж/К – постоянная Больцмана;

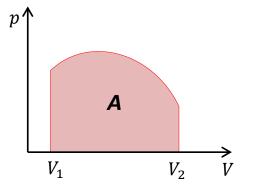
i — число степеней свободы частиц газа:

для одноатомных i = 3, для двухатомных i = 5, для трех- и более атомных i = 6.

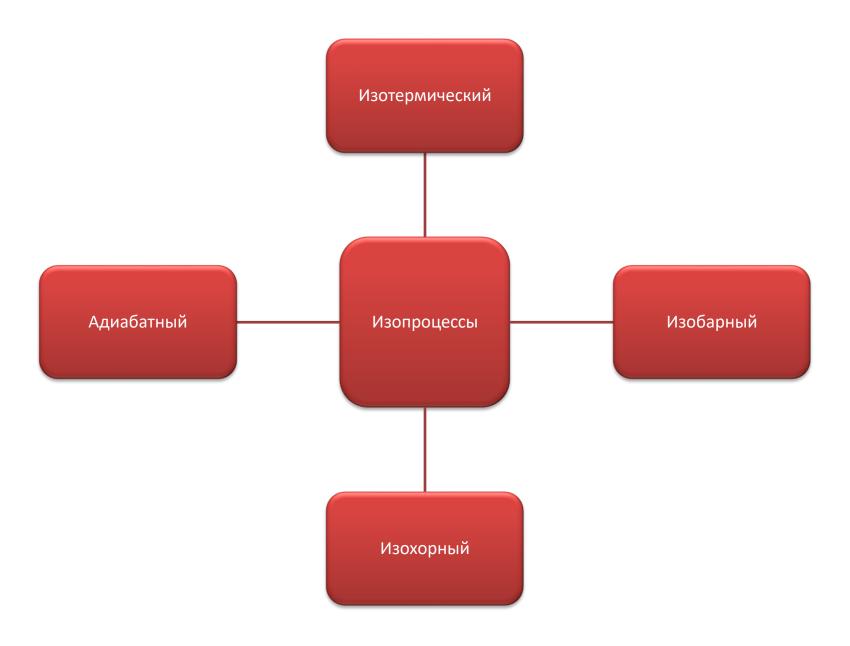
## ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

Количество теплоты, подведенное к системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами:

$$Q = \Delta U + A$$


Изменение внутренней энергии газа

$$\Delta U = rac{i}{2}R
u\Delta T = rac{i}{2}\Delta(PV) = egin{cases} rac{i}{2}p\Delta V, 
m e c \pi u \ p = c o n s t \ rac{i}{2}V\Delta p, 
m e c \pi u \ V = c o n s t \end{cases}$$


Работа газа

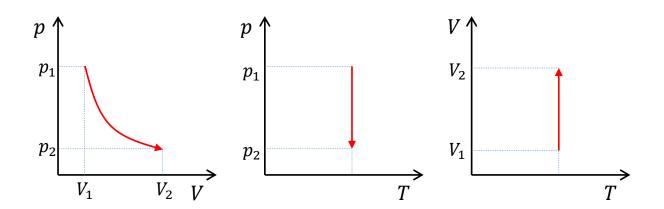
В общем случае  $A=\int\limits_{V_1}^{V_2}pdV$ 

Для изобарного процесса (p=const)  $A=p\Delta V$ 



Работа газа положительна, работа над газом отрицательна, если газ расширяется Работа газа отрицательна, работа над газом положительна, если газ сжимается




# изотермический процесс

$$T = const$$

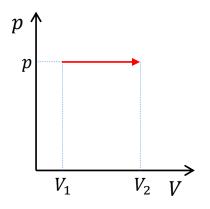
Закон Бойля—Мариотта:  $p_1V_1=p_2V_2$ 

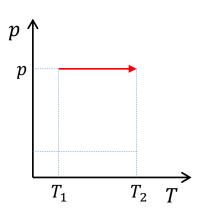
$$\Delta U = 0 \qquad A = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} \frac{vRT}{V} dV = vRT \cdot ln \frac{V_2}{V_1} = vRT \cdot ln \frac{p_1}{p_2}$$

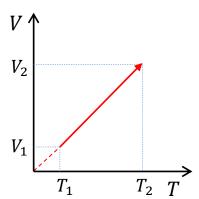
$$Q = A$$



# ИЗОБАРНЫЙ ПРОЦЕСС


$$p = const$$


Закон Гей-Люссака: 
$$rac{V_1}{T_1} = rac{V_2}{T_2}$$


$$\Delta U = \frac{i}{2} R \nu \Delta T = \frac{i}{2} p \Delta V$$

$$\Delta U = \frac{i}{2}R\nu\Delta T = \frac{i}{2}p\Delta V$$
  $A = \int_{V_1}^{V_2}pdV = p\Delta V = R\nu\Delta T$ 

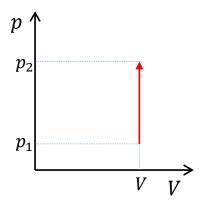
$$Q = \Delta U + A = \frac{i+2}{2}p\Delta V = \frac{i+2}{2}R\nu\Delta T$$

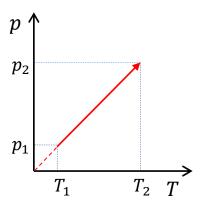


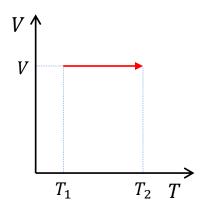




# изохорный процесс


$$V = const$$


Закон Шарля: 
$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$

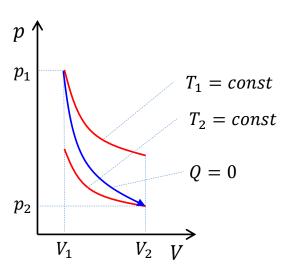

$$\Delta U = \frac{i}{2} R \nu \Delta T = \frac{i}{2} V \Delta p$$

$$A = \int_{V_1}^{V_2} p dV = 0$$

$$Q = \Delta U = \frac{i}{2} V \Delta p = \frac{i}{2} R \nu \Delta T$$

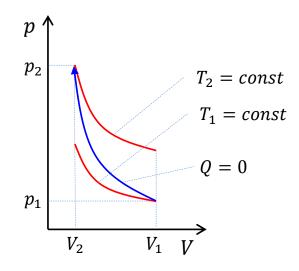






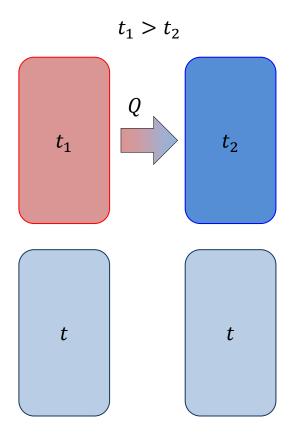

# АДИАБАТНЫЙ ПРОЦЕСС

Адиабатный процесс — термодинамический процесс в теплоизолированной системе (Q=0).


$$\Delta U + A = 0 \Rightarrow A = -\Delta U$$

#### Адиабатное расширение газа




$$A = -\Delta U = -\frac{i}{2}R\nu\Delta T$$

### Адиабатное сжатие газа



$$\Delta U = -A = \frac{i}{2} R \nu \Delta T$$

# ТЕПЛОВОЙ БАЛАНС



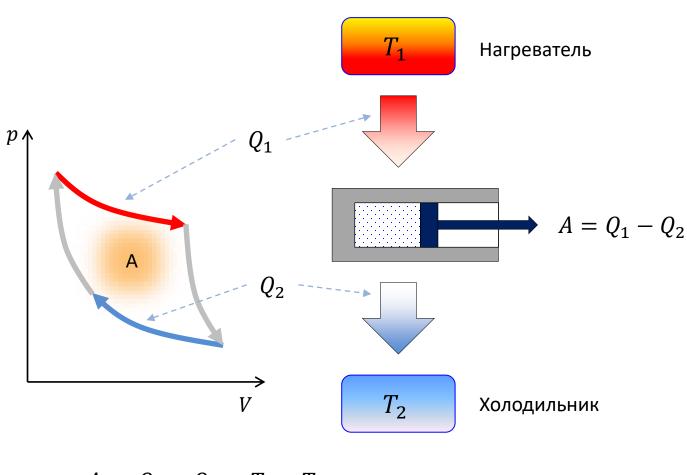
 $m_1$ — масса первого тела;

 $c_1$  — его удельная теплоемкость;

 $t_1$  — начальная температура.

 $m_2$ – масса второго тела;

 $c_2$  — его удельная теплоемкость;

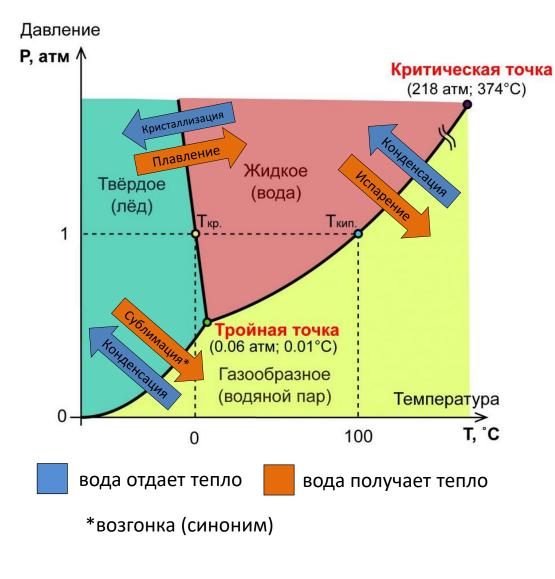

 $t_2$  — начальная температура.

t – установившаяся температура в системе.

$$Q = m_1 c_1 (t_1 - t) = m_2 c_2 (t - t_2)$$

$$t = \frac{m_1 c_1 t_1 + m_2 c_2 t_2}{m_1 c_1 + m_2 c_2}$$

# ТЕПЛОВОЙ ДВИГАТЕЛЬ




$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1}$$

$$T = t[^{\circ}C] + 273[K]$$



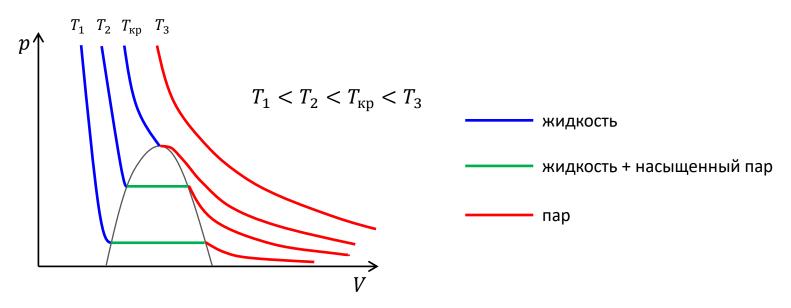
### ФАЗОВАЯ ДИАГРАММА ВОДЫ



$$Q = \lambda m$$

 $\lambda$  — удельная теплота фазового перехода

# ПАР НАСЫЩЕННЫЙ, НЕНАСЫЩЕННЫЙ


Давление насыщенного пара при данной температуре — максимальное давление, которое может иметь пар над жидкостью при этой температуре.

Относительная влажность воздуха — процентное отношение концентрации водяного пара в воздухе к концентрации насыщенного пара при той же температуре:

$$\eta = \frac{n}{n_{\text{hac.пар}}} \cdot 100\% = \frac{p}{p_{\text{hac.пар}}} \cdot 100\% = \frac{\rho}{\rho_{\text{hac.пар}}} \cdot 100\%$$

Температура кипения — температура, при которой давление насыщенного пара жидкости начинает превосходить внешнее давление на жидкость.

#### Изотермы сжижения пара



# ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

В циклически действующем тепловом двигателе невозможно преобразовать все количество теплоты, полученное от нагревателя, в механическую работу.

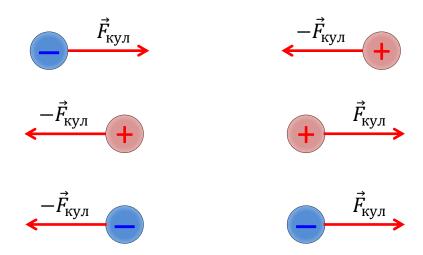
# СТАТИСТИЧЕСКОЕ ИСТОЛКОВАНИЕ ВТОРОГО ЗАКОНА ТЕРМОДИНАМИКИ

Замкнутая система многих частиц самопроизвольно переходит из более упорядоченного состояния в менее упорядоченное (из менее вероятного состояния в более вероятное).

### Пример:

Диффузия — физическое явление, при котором происходит самопроизвольное взаимное проникновение частиц одного вещества в другое при их контакте (выравнивание концентраций).

Проводники в электрическом поле


электрического поля

#### ЗАКОН КУЛОНА

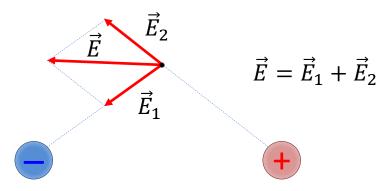
Сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, прямо пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей заряды:

$$F_{\text{кул}} = k \frac{q_1 q_2}{r^2}, \qquad k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{\text{H} \cdot \text{M}^2}{\text{K}\pi^2}, \qquad \varepsilon_0 = 8.85 \cdot 10^{-12} \Phi/_{\text{M}}$$

Разноименные заряды притягиваются, одноименные отталкиваются.



### НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

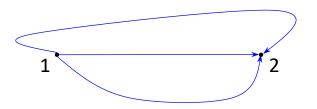

Напряженность электростатического поля векторная физическая величина, равная отношению силы Кулона, с которой поле действует на пробный положительный заряд, помещенный в данную точку поля, к величине этого заряда:

$$\vec{E} = \frac{\vec{F}}{q} \left[ \frac{H}{K\pi} \right], \left[ \frac{B}{M} \right] \Rightarrow \vec{F} = q\vec{E}$$

Напряженность поля точечного заряда

$$|\vec{E}| = k \frac{q}{r^2}$$
  $\stackrel{-q}{\longleftarrow}$   $\stackrel{\vec{E}}{\longleftarrow}$   $\stackrel{q}{\longleftarrow}$ 

Напряженность поля системы зарядов в данной точке равна геометрической (векторной) сумме напряженностей полей, созданных в этой точке каждым зарядом в отдельности:  $\vec{E}=\vec{E}_1+\vec{E}_2+\cdots+\vec{E}_n$ .




# ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Потенциал в данной точке численно равен работе сил электростатического поля по перемещению единичного положительного заряда из этой точки в точку, принятую за нуль потенциала:

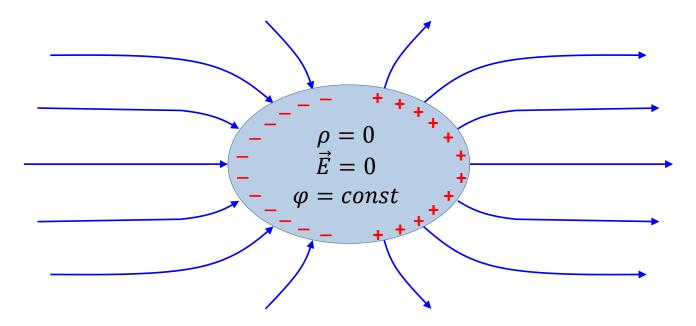
$$\varphi = \frac{A}{q} [B]$$

Работа, совершаемая силами электростатического поля при перемещении заряда q из точки 1 в точку 2, не зависит от траектории, а определяется только разностью потенциалов точек 1 и 2:



$$A_{12} = q(\varphi_1 - \varphi_2)$$

Потенциал электростатического поля точечного заряда q на расстоянии r от заряда:


$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

$$q$$
  $r$   $\varphi$ 

# ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

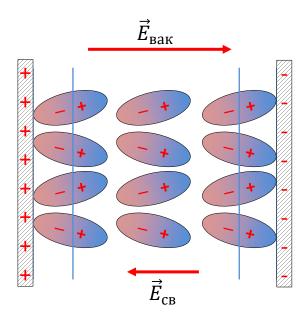
Проводник — вещество, в котором свободные заряды могут перемещаться по всему объему:

- напряженность поля внутри проводника, помещенного в электростатическое поле, равна нулю;
- > объемная плотность заряда равна нулю;
- > заряды перераспределяются по поверхности проводника;
- поверхность металла эквипотенциальная поверхность (потенциал всех точек проводника одинаков);
- линии напряженности электростатического поля перпендикулярны поверхности металла.



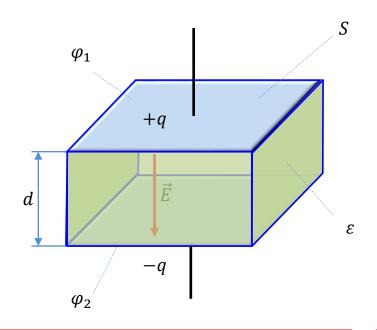
# ДИЭЛЕКТРИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Диэлектрик — вещество, содержащее только связанные заряды.


Связанные заряды — разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга.

Полярный диэлектрик состоит из полярных молекул, а неполярный — из неполярных.

Поляризация диэлектрика — процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей.


Относительная диэлектрическая проницаемость среды  $\varepsilon$  — число, показывающее, во сколько раз напряженность электростатического поля в вакууме больше, чем в однородном диэлектрике.

$$\varepsilon = \frac{E_{\text{Bak}}}{E}$$



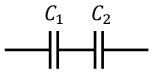
$$\vec{E} = \vec{E}_{\text{BaK}} + \vec{E}_{\text{CB}} = \frac{\vec{E}_{\text{BaK}}}{\varepsilon}$$

# КОНДЕНСАТОР



$$U = \varphi_1 - \varphi_2 \qquad E = \frac{U}{d}$$

Емкость конденсатора

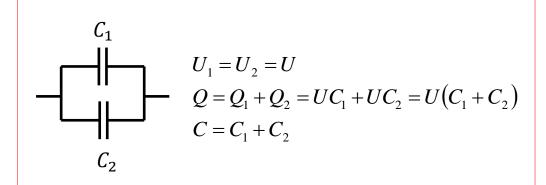

$$C = \frac{q}{U} = \frac{S\varepsilon\varepsilon_0}{d} \ [\Phi]$$

arepsilon — относительная диэлектрическая проницаемость

Энергия электрического поля конденсатора

$$W_C = \frac{q^2}{2C} = \frac{U^2C}{2} = \frac{qU}{2}$$

Последовательное соединение конденсаторов




$$q_1 = q_2 = q$$

$$U = U_1 + U_2 = \frac{q}{C_1} + \frac{q}{C_2} = q \left( \frac{1}{C_1} + \frac{1}{C_2} \right)$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

Параллельное соединение конденсаторов



соединение проводников

# ЭЛЕКРИЧЕСКИЙ ТОК В РАЗЛИЧНЫХ СРЕДАХ

Электрический ток — упорядоченное (направленное) движение заряженных частиц (свободных носителей заряда).

Сила тока — электрический заряд, прошедший через поперечное сечение проводника за единицу времени:

$$I = \frac{q}{t} \quad [A]$$

Плотность тока — сила тока через единицу поперечного сечения проводника:

$$j = \frac{I}{S} \left[ A / _{M^2} \right]$$

| Проводящая среда            | Свободные носители заряда                        |
|-----------------------------|--------------------------------------------------|
| Металл                      | Электроны                                        |
| Ионизированный газ (плазма) | Положительно заряженные ионы и электроны         |
| Раствор электролита         | Положительные ионы (катионы), отрицательные ионы |
|                             | (анионы)                                         |
| Чистый полупроводник        | Дырки (положительные), электроны (отрицательные) |
| Полупроводник п-типа        | Электроны (преимущественно)                      |
| Полупроводник р-типа        | Дырки (преимущественно)                          |

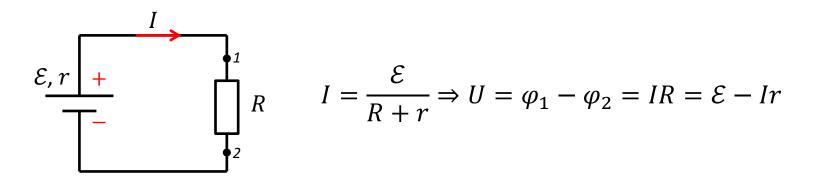
#### ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ

Сила тока в однородном проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:

$$I = \frac{U}{R} \qquad \qquad 1 \xrightarrow{R} \qquad \qquad I \longrightarrow 2 \qquad \qquad U = \varphi_1 - \varphi_2$$

Зависимость электрического сопротивления от геометрических размеров и материала проводника:

$$R = \rho \frac{l}{S}$$
, где


ho – удельное сопротивление, S – площадь поперечного сечения, l – длина проводника.

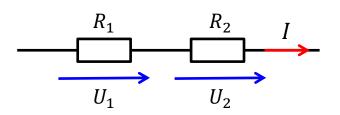
Зависимость удельного сопротивления металлического проводника от температуры:

$$ho=
ho_0(1+lpha\Delta T)$$
, где  $lpha$  – температурный коэффициент сопротивления.

# ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Сила тока в замкнутой цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи:




ЗАКОН ОМА ДЛЯ НЕОДНОРОДНОГО УЧАТСКА ЦЕПИ

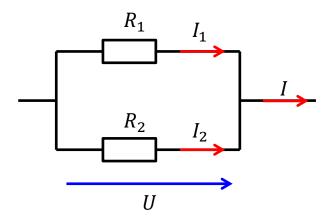
$$\varphi_1 \qquad R \qquad \frac{\mathcal{E}, r}{l} \qquad \qquad I = \frac{\mathcal{E} + \varphi_1 - \varphi_2}{R + r}$$

$$\mathcal{E}=rac{A}{q}$$
, где  $\mathcal{E}-$  величина ЭДС (электродвижущей силы),

A — работа по перемещению заряда q против сил электрического поля.

### ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ




$$I = I_1 = I_2$$

$$U = U_1 + U_2$$

$$R = R_1 + R_2$$

$$\frac{P_1}{P_2} = \frac{R_1}{R_2}$$

## ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ



$$U = U_1 = U_2$$

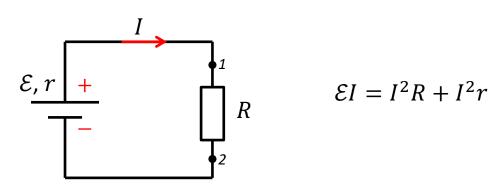
$$I = I_1 + I_2$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{P_1}{P_2} = \frac{R_2}{R_1}$$

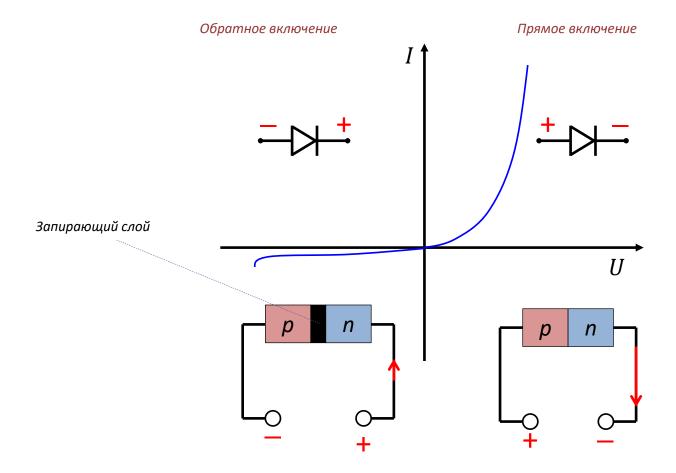
#### РАБОТА И МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока — работа, совершаемая электрическим полем при упорядоченном движении зарядов в проводнике.


Количество теплоты, выделяющееся в проводнике, равно работе электрического поля:

$$Q = A = Uq = UIt = I^2Rt = \frac{U^2}{R}t$$

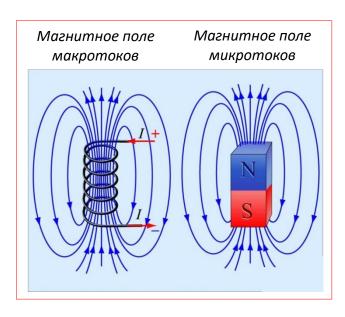
Мощность электрического тока — работа электрического тока за единицу времени:

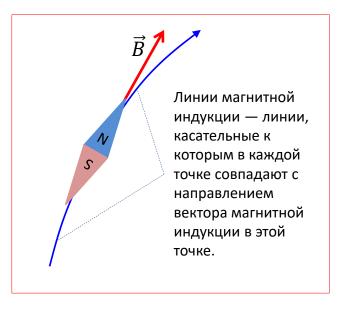

$$P = \frac{A}{t} = UI = I^2 R = \frac{U^2}{R}$$

### Баланс мощности замкнутой цепи



# ПОЛУПРОВОДНИКОВЫЙ ДИОД

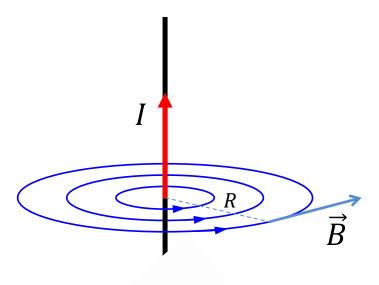

Полупроводниковый диод — элемент электрической системы, содержащий p-n-переход и два вывода для включения в электрическую цепь.




# МАГНИТНОЕ ПОЛЕ И ВЗАИМОДЕЙСТВИЕ МАГНИТОВ

Магнитное поле всегда порождается электрическими токами:

- **макротоками** (упорядоченным движением заряженных частиц под действием электрического поля);
- **микротоками** (внутриатомными токами).



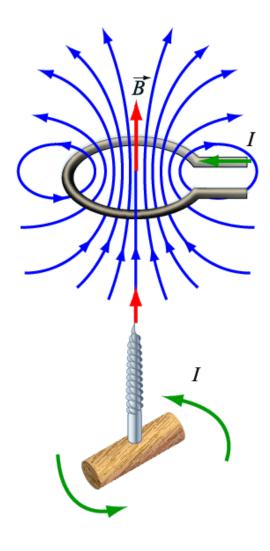



Направление вектора магнитной индукции совпадает с направлением северного полюса свободной магнитной стрелки в данной точке.

Одноименные магнитные полюса отталкивают друг друга, а разноименные притягивают.

### МАГНИТНОЕ ПОЛЕ ПРЯМОГО ПРОВОДНИКА С ТОКОМ



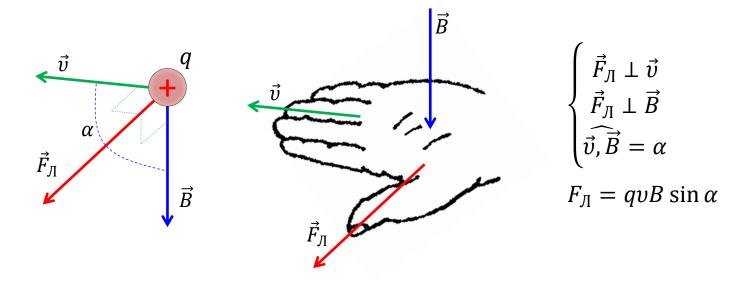

$$B=rac{\mu_0}{2\pi}rac{I}{R}$$
  $\left[{
m T}\pi
ight]$   $\mu_0=4\pi\cdot 10^{-7}$   $^{\Gamma_{
m H}}\!/_{{
m M}}-$  магнитная постоянная

Линии магнитной индукции всегда замкнуты: они не имеют начала и конца.

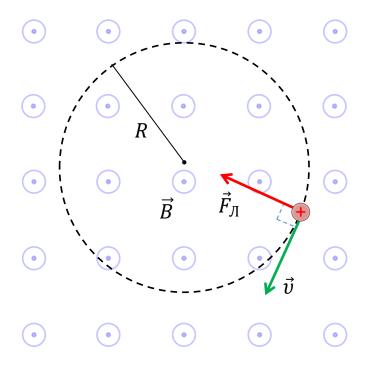


Если охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то кончики остальных пальцев покажут направление вектора магнитной индукции.

#### МАГНИТНОЕ ПОЛЕ КОЛЬЦЕВОГО ТОКА




Если вращать рукоятку буравчика по направлению тока в витке, то поступательное перемещение буравчика совпадает с направлением вектора магнитной индукции, созданной током в витке на своей оси.


Линии магнитной индукции всегда замкнуты: они не имеют начала и конца.

# СИЛА ЛОРЕНЦА

Если кисть левой руки расположить так, что четыре вытянутых пальца указывают направление скорости положительного заряда (или противоположное скорости отрицательного заряда), а вектор магнитной индукции входит в ладонь, то отогнутый (в плоскости ладони) на 90° большой палец покажет направление силы Лоренца.

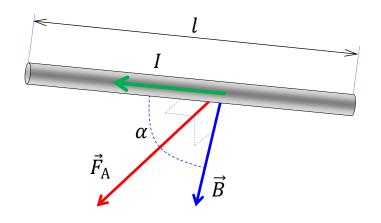


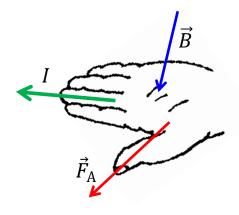
# ДВИЖЕНИЕ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В ОДНОРОДНОМ МАГНИТНОМ ПОЛЕ

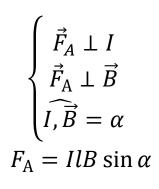


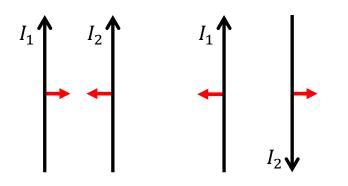
По второму закону Ньютона:

$$F_{\Pi} = m \frac{v^2}{R}, \qquad qvB = m \frac{v^2}{R}$$

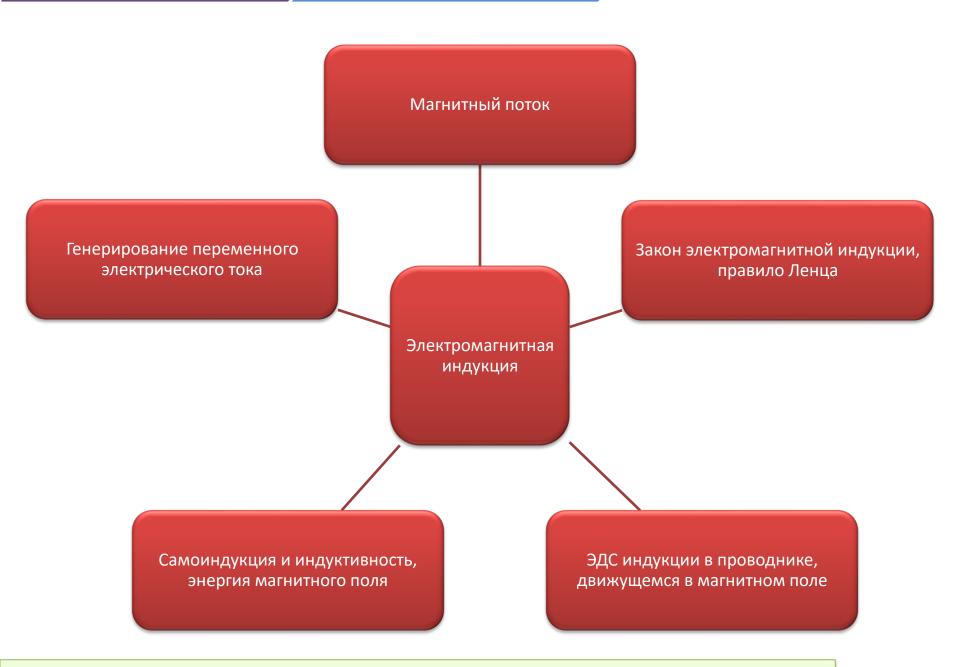

$$R = \frac{mv}{qB}$$


$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$


$$\nu = \frac{1}{T} = \frac{qB}{2\pi m}$$

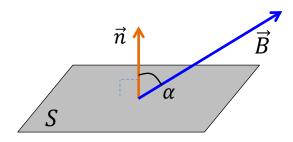

### СИЛА АМПЕРА

Если кисть левой руки расположить так, что четыре вытянутых пальца указывают направление электрического тока, а вектор магнитной индукции входит в ладонь, то отогнутый (в плоскости ладони) на 90° большой палец покажет направление силы Лоренца.



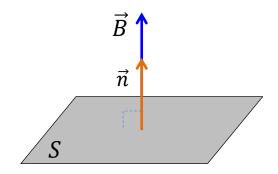





- Параллельно расположенные проводники, по которым протекают токи в одном направлении, притягиваются.
- Параллельно расположенные проводники, по которым протекают токи в противоположных направлениях, отталкиваются.




# МАГНИТНЫЙ ПОТОК

Магнитный поток (поток магнитной индукции) через поверхность площадью S — физическая величина, равная скалярному произведению вектора магнитной индукции  $\vec{B}$  на вектор площади  $\vec{S} = S \cdot \vec{n}$ :



$$\Phi = \vec{B} \cdot \vec{S} = BS \cos \alpha \quad [B6]$$

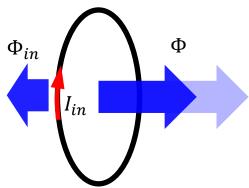
 $\vec{n}$  — нормаль к поверхности — единичный вектор, перпендикулярный поверхности S



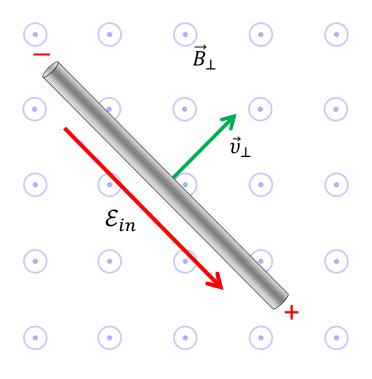
Если индукция магнитного поля перпендикулярна поверхности ( $\alpha=0$ ), то

$$\Phi = B \cdot S$$

# ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ, ПРАВИЛО ЛЕНЦА


# Закон электромагнитной индукции, или закон Фарадея—Максвелла

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром:


$$\mathcal{E}_{in} = -\frac{\Delta \Phi}{\Delta t}$$

# Правило Ленца

Индукционный ток, вызванный ЭДС электромагнитной индукции в контуре, имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, препятствует изменению магнитного потока, вызвавшего этот ток.



# ЭДС ИНДУКЦИИ В ПРОВОДНИКЕ, ДВИЖУЩЕМСЯ В МАГНИТНОМ ПОЛЕ

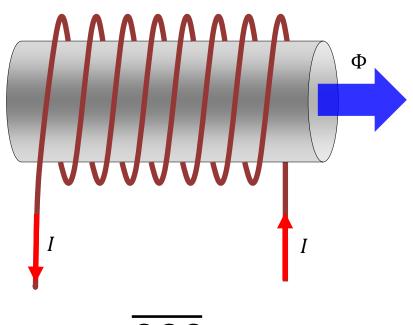


ЭДС в проводнике, движущемся в магнитном поле, обусловлена действием на свободные заряды в проводнике силы Лоренца.

$$\mathcal{E}_{in} = B_{\perp} v_{\perp} l$$

l — длина проводника;

 $v_{\perp}$  — составляющая скорости проводника, перпендикулярная ему;


 $B_{\perp}$  — составляющая индукции магнитного поля, перпендикулярная проводнику и его скорости.

Если проводник не замкнут на внешнюю цепь, то в результате перераспределения зарядов в проводнике под действием ЭДС индукции, между его концами возникнет разность потенциалов  $U=\mathcal{E}_{in}=B_\perp v_\perp l.$ 

# САМОИНДУКЦИЯ И ИНДУКТИВНОСТЬ, ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

Самоиндукция — возникновение ЭДС индукции в проводящем контуре при изменении в нем силы тока.

# КАТУШКА ИНДУКТИВНОСТИ

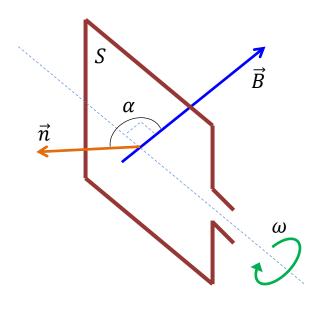


ИНДУКТИВНОСТЬ КАТУШКИ

$$L = \frac{\Phi}{I}, [\Gamma_{\rm H}]$$

МАГНИТНЫЙ ПОТОК

$$\Phi = LI$$


ЭДС САМОИНДУКЦИИ КАТУШКИ

$$\mathcal{E}_{in} = -\frac{\Delta\Phi}{\Delta t} = -L\frac{\Delta I}{\Delta t}$$

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ КАТУШКИ

$$W_L = \frac{\Phi I}{2} = \frac{LI^2}{2} = \frac{\Phi^2}{2L}$$

### ГЕНЕРИРОВАНИЕ ПЕРЕМЕННОГО ЭЛЕКТРИЧЕСКОГО ТОКА



Контур площадью S вращается в однородном магнитном поле индукции  $\overrightarrow{B}$  с угловой скоростью  $\omega$ . Ось вращения перпендикулярна индукции.

$$\alpha = \omega t + \varphi_0$$

$$\Phi = BS \cos \alpha = BS \cos(\omega t + \varphi_0)$$

ЭДС индукции в контуре

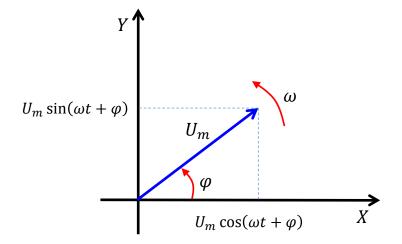
$$\mathcal{E}_{in} = -\frac{d\Phi}{dt} = BS\omega\sin(\omega t + \varphi_0)$$

Амплитуда генерируемой ЭДС

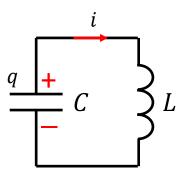
$$\mathcal{E}_{Ain} = BS\omega$$



### ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ


$$u(t) = U_m \cos(\omega t + \varphi)$$

 $(\omega t + \varphi)$  — фаза колебаний;  $\varphi$  — начальная фаза колебаний;  $U_m$  — амплитуда,  $\omega$  — круговая частота  $[c^{-1}]$ ;  $T = \frac{2\pi}{\omega}$  — период колебаний [c];  $f = \frac{1}{T} = \frac{\omega}{2\pi}$  — частота  $[\Gamma \chi]$ .


### ГРАФИК

# $U_{m}$ $U_{m} \cos \varphi$ -T/2 $-U_{m} \cos \varphi$ $-U_{m} \cos \varphi$

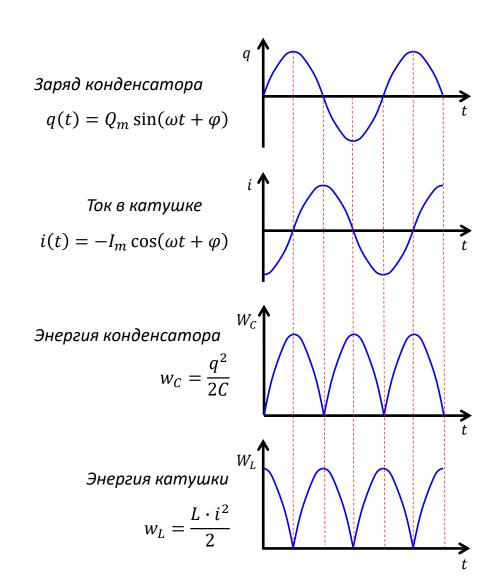
# ВЕКТОРНАЯ ДИАГРАММА



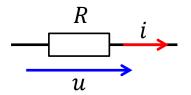
# КОЛЕБАТЕЛЬНЫЙ КОНТУР



$$i(t) = -q'(t)$$


$$\omega = \frac{1}{\sqrt{LC}} \quad [c^{-1}]$$

$$T = \frac{2\pi}{\omega} = 2\pi\sqrt{LC}$$
 [c]

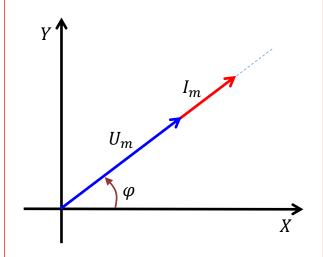

$$u = \frac{1}{T} = \frac{1}{2\pi\sqrt{LC}}$$
 [Гц]

Энергия электромагнитного поля

$$W = \frac{q^2}{2C} + \frac{L \cdot i^2}{2} = \frac{Q_m^2}{2C} = \frac{L \cdot I_m^2}{2}$$



# РЕЗИСТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА




$$u(t) = U_m \cos(\omega t + \varphi)$$

$$i(t) = I_m \cos(\omega t + \varphi)$$

$$U_m = I_m R$$

# ВЕКТОРНАЯ ДИАГРАММА



Напряжение и сила тока в резисторе совпадают по фазе в любой момент времени.

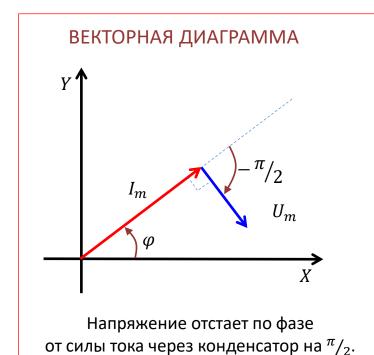
# ДЕЙСТВУЮЩИЕ ЗНАЧЕНИЯ


При прохождении электрического тока через резистор в нем выделяется тепло мощностью

$$P = rac{1}{T} \int\limits_{0}^{T} i^2 R dt = rac{I_m^2 R}{2} = I_{ot}^2 R = rac{U_{ot}^2}{R} = U_{ot} I_{ot},$$

где 
$$U_{
m f I}=rac{U_m}{\sqrt{2}}$$
 ,  $I_{
m f I}=rac{I_m}{\sqrt{2}}$  —

действующие значения напряжения и тока

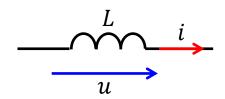

# КОНДЕНСАТОР В ЦЕПИ ПЕРЕМЕННОГО ТОКА



$$i(t) = I_m \cos(\omega t + \varphi)$$

$$u(t) = U_m \cos(\omega t + \varphi - \frac{\pi}{2})$$

$$U_m = I_m \frac{1}{\omega C} = I_m X_C$$




$$X_{C} = \frac{1}{\omega C}$$
 — емкостное сопротивление или реактивное сопротивление конденсатора.

Среднее значение мощности переменного тока на конденсаторе за период равно нулю:

$$p = iu = \frac{1}{2} I_m U_m \cos \left( 2\omega t + 2\varphi - \frac{\pi}{2} \right)$$
$$\langle p \rangle = \frac{1}{T} \int_{-T}^{T} p dt = 0$$

# КАТУШКА ИНДУКТИВНОСТИ В ЦЕПИ ПЕРЕМЕННОГО ТОКА

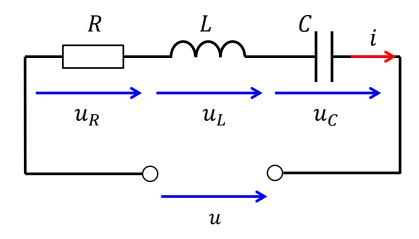


$$i(t) = I_m \cos(\omega t + \varphi)$$

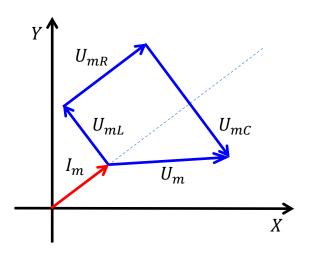
$$u(t) = U_m \cos(\omega t + \varphi + \frac{\pi}{2})$$

$$U_m = I_m \omega L = I_m X_L$$




силу тока через катушку на  $\pi/_2$ .

 $X_L = \omega L$  — индуктивное сопротивление или реактивное сопротивление катушки.


Среднее значение мощности переменного тока на катушке за период равно нулю:

$$p = iu = \frac{1}{2} I_m U_m \cos\left(2\omega t + 2\varphi + \frac{\pi}{2}\right)$$
$$\langle p \rangle = \frac{1}{T} \int_0^T p dt = 0$$

### ВЫНУЖДЕННЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ



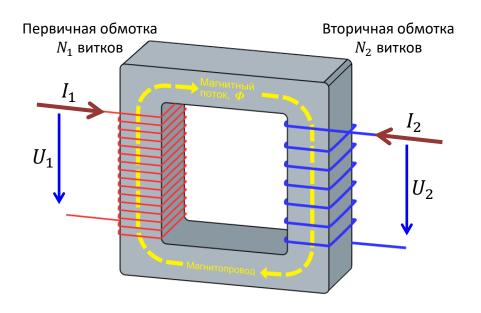
# ВЕКТОРНАЯ ДИАГРАММА



$$u = u_L + u_R + u_C$$

Полное сопротивление переменному току

$$Z = \frac{U_m}{I_m} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$


$$I_m = \frac{U_m}{Z}$$

Резонансная частота

$$\omega_{\rm p}L - \frac{1}{\omega_{\rm p}C} = 0 \Rightarrow \omega_{\rm p} = \frac{1}{\sqrt{LC}} = \omega_0$$

Резонанс в колебательном контуре — физическое явление резкого возрастания амплитуды колебаний силы тока в контуре при совпадении частоты вынужденных колебаний с частотой собственных колебаний в нем.

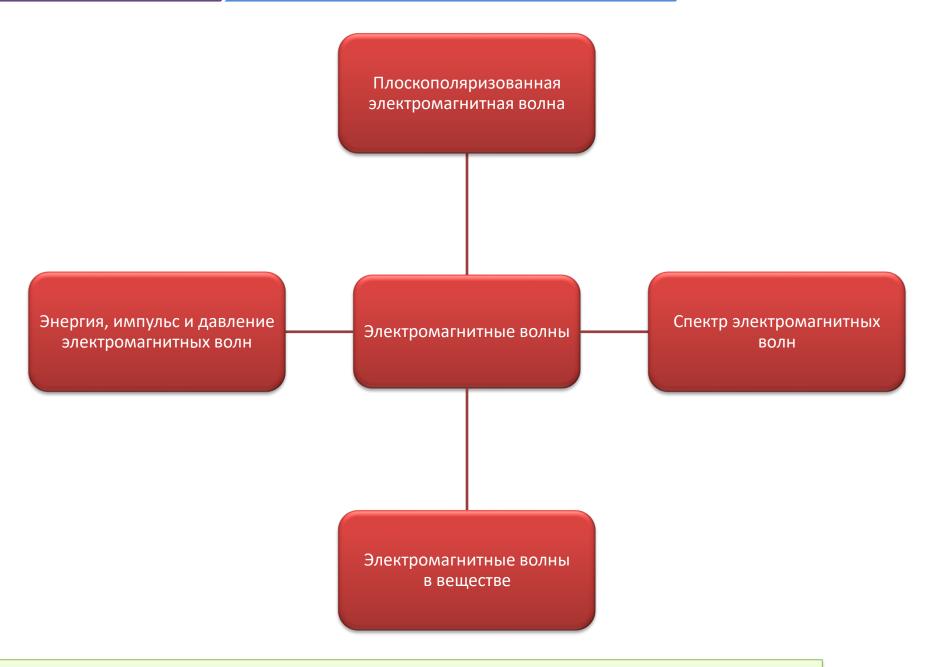
### ТРАНСФОРМАТОР



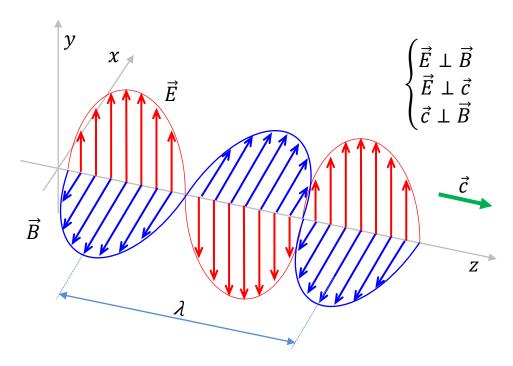
Трансформатор — устройство, применяемое для повышения или понижения переменного напряжения.

Коэффициент трансформации — величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора:

$$k = \frac{U_1}{U_2} = \frac{N_1}{N_2}$$


Мощность на входе  $P_1 = U_1 I_1$ 

Мощность на выходе  $P_2=U_2I_2$ 


КПД трансформатора 
$$\eta = \frac{P_2}{P_1} = \frac{U_2 I_2}{U_1 I_1} \le 1$$

Для идеального трансформатора ( $\eta = 1$ ):

$$U_1I_1=U_2I_2$$



### ПЛОСКОПОЛЯРИЗОВАННАЯ ЭЛЕКТРОМАГНИТНАЯ ВОЛНА

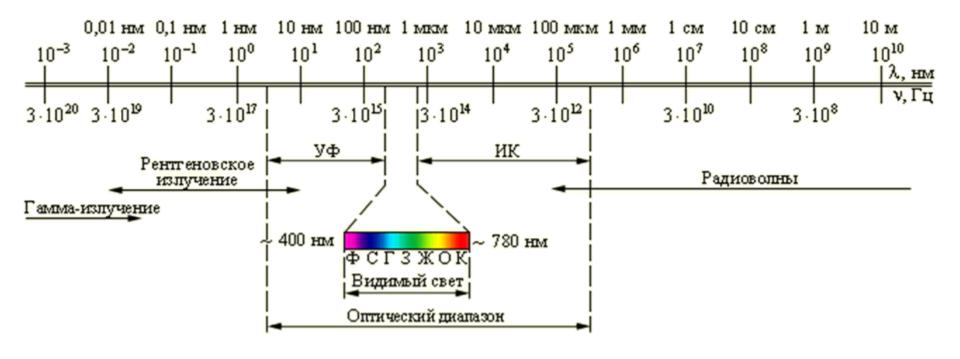


- ightarrow  $ec{E}$  напряженность электрического поля
- $ightharpoonup \vec{B}$  индукция магнитного поля
- $ightarrow ec{c}$  скорость распространения электромагнитных волн в вакууме (скорость света в вакууме)  $c=3\cdot 10^8~{\rm M/c}$
- $\succ$   $\lambda$  длина волны
- ν частота [Гц]
- $\sim \omega$  круговая (циклическая) частота [ $c^{-1}$ ]

- $ightharpoonup ec{E}$  и  $ec{B}$  взаимно ортогональны и составляют правовинтовую систему с направлением распространения  $ec{c}$ : если смотреть вдоль  $ec{c}$ , то поворот от  $ec{E}$  к  $ec{B}$  по часовой стрелке.
- Плоскость поляризации

   электромагнитной волны плоскость,
   проходящая через направление
   колебаний вектора напряженности
   электрического поля и направление
   распространения волны.

$$\lambda = cT = \frac{c}{v} = \frac{2\pi c}{\omega}$$

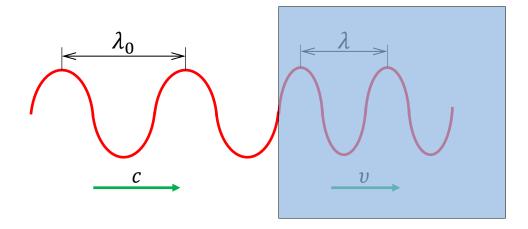

$$\nu = \frac{1}{T}$$

$$\omega = \frac{2\pi}{T} = 2\pi\nu$$

$$E(z,t) = E_m \sin\left(\omega t - \frac{2\pi z}{\lambda}\right)$$

$$E_m \sqrt{\varepsilon_0} = \frac{B_m}{\sqrt{\mu_0}}$$

### СПЕКТР ЭЛЕКТРОМАГНИТНЫХ ВОЛН




Цвета видимой части спектра в порядке увеличения частоты или уменьшения длины волны: **Каждый Охотник** Желает **Знать Где Сидит Фазан.** 

# ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ В ВЕЩЕСТВЕ

При переходе электромагнитной волны из вакуума в вещество частота и период остаются неизменными, скорость волны уменьшается в n раз, длина волны уменьшается, соответственно, тоже в n раз, где n — абсолютный показатель преломления среды:

$$v = \frac{c}{n}, \qquad \lambda = \frac{\lambda_0}{n}$$



# ЭНЕРГИЯ, ИМПУЛЬС И ДАВЛЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН

**Объемная плотность** энергии в электромагнитной волне:  $w_{\rm 3M} = \varepsilon_0 E^2$ ,  $\left[\frac{\Delta m}{M^3}\right]$ 

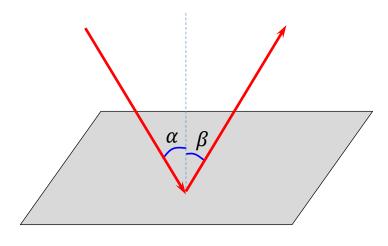
**Средняя объемная плотность** энергии в электромагнитной волне: 
$$\langle w_{\rm ЭM} \rangle = \frac{1}{2} \, \varepsilon_0 E_m^2$$
,  $\left[ \frac{\mbox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scalebox{$\scal$ 

**Плотность потока энергии** электромагнитной волны — мощность электромагнитного излучения, проходящего сквозь единицу площади поверхности, расположенной перпендикулярно направлению распространения волны:

$$P_{\mathrm{9M}} = w_{\mathrm{9M}} \cdot c, \qquad \left[\frac{\mathrm{BT}}{\mathrm{M}^2}\right]$$

**Интенсивность** электромагнитной волны — среднее значение плотности потока энергии электромагнитной волны:

$$I = \langle P_{\mathfrak{I}M} \rangle = \langle w_{\mathfrak{I}M} \rangle \cdot c, \qquad \left[ \frac{\mathrm{BT}}{\mathrm{m}^2} \right]$$

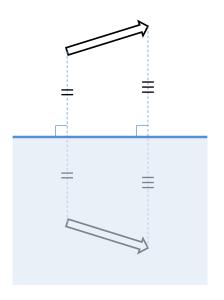

Взаимосвязь импульса электромагнитной волны p с переносимой ею энергией  $W\colon \quad p=\dfrac{W}{c}$ 

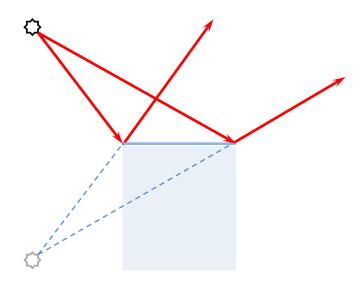
**Давление** электромагнитной волны на поверхность: 
$$p = \frac{I}{c}(1+R) = \langle w_{\rm 3M} \rangle (1+R)$$
,

где R — коэффициент отражения, т. е. отношение интенсивности отраженной волны к интенсивности падающей.

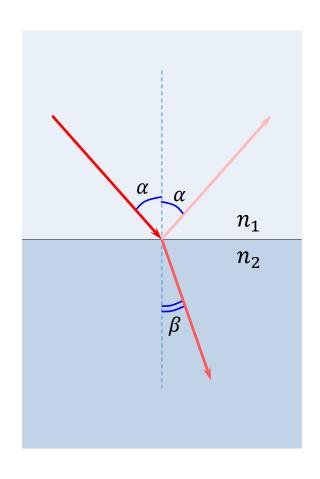


### ОТРАЖЕНИЕ СВЕТА





$$\alpha = \beta$$

- Угол падения волны угол между падающим лучом и перпендикуляром к поверхности (α).
- Угол отражения волны угол между отраженным лучом и перпендикуляром к отражающей поверхности (β).
- Угол отражения равен углу падения. Падающий луч, отраженный луч и перпендикуляр, восставленный в точке падения к отражающей поверхности, лежат в одной плоскости.


### ПЛОСКОЕ ЗЕРКАЛО

- Мнимое изображение изображение предмета, возникающее при пересечении продолжений расходящегося пучка лучей.
- Мнимое изображение точечного источника в плоском зеркале находится в симметричной точке относительно зеркала.



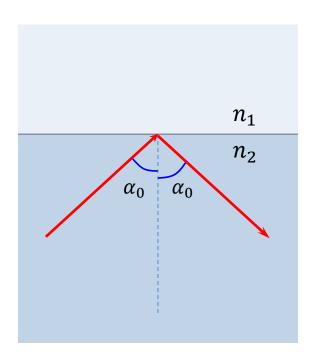


### ПРЕЛОМЛЕНИЕ СВЕТА



Преломление — изменение направления распространения света при прохождении из одной среды в другую.

$$n_1 \sin \alpha = n_2 \sin \beta$$


 $n_1$ ,  $n_2$  — абсолютные показатели преломления

$$n_{21} = \frac{n_2}{n_1} = \frac{\sin \alpha}{\sin \beta}$$

 $n_{21}$  – относительный показатель преломления

### ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ

Полное внутреннее отражение — явление отражения света от оптически менее плотной среды, при котором преломление отсутствует, а интенсивность отраженного света практически равна интенсивности падающего.



Угол полного внутреннего отражения  $\alpha_0$  — минимальный угол падения света, начиная с которого возникает явление полного внутреннего отражения.

$$\sin \alpha_0 = \frac{n_1}{n_2}$$

### ФОКУСНОЕ РАССТОЯНИЕ ЛИНЗЫ

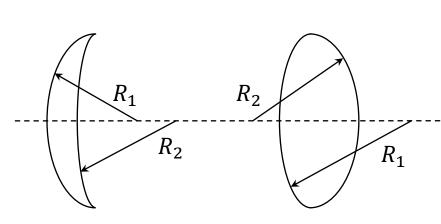
$$D = \frac{1}{F} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Радиус кривизны положительный, если поверхность выпуклая.

Радиус кривизны отрицательный, если поверхность вогнутая.

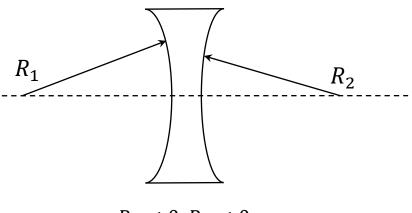
Если F > 0, то линза собирающая, если F < 0, то линза рассеивающая.

D — оптическая сила линзы;


F — фокусное расстояние линзы;

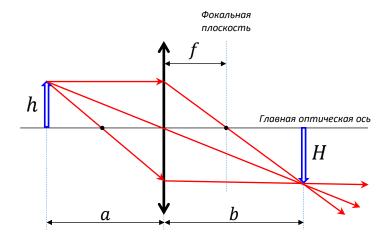
n — относительный показатель

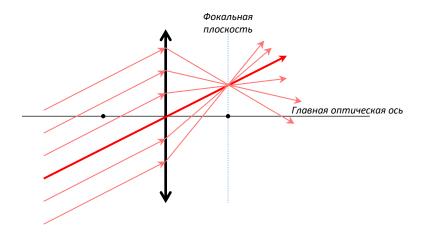
преломления материала линзы;


 $R_1$ ,  $R_2$  — радиусы кривизны ее поверхности.

Радиус кривизны положительный, если поверхность выпуклая.
Радиус кривизны отрицательный, если поверхность вогнутая.




$$R_1 > 0, R_2 < 0$$

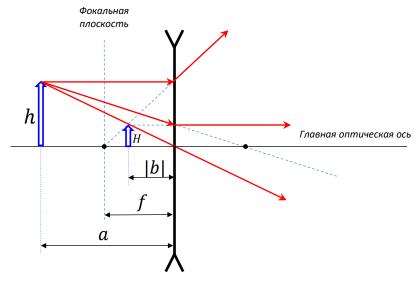

$$R_1 > 0, R_2 > 0$$

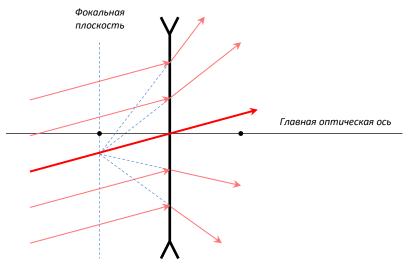


$$R_1 < 0, R_2 < 0$$

# СОБИРАЮЩАЯ ЛИНЗА







- Луч, параллельный главной оптической оси, преломляясь в линзе, проходит через ее главный фокус.
- Луч, проходящий через главный фокус, после преломления в линзе идет параллельно главной оптической оси.
- Луч, идущий через оптический центр тонкой линзы, проходит через нее, не преломляясь.
- Если пучок параллельных лучей падает на собирающую линзу под небольшим углом к главной оптической оси, то преломленные лучи пересекаются в одной точке фокальной плоскости линзы, называемой побочным фокусом.

$$rac{1}{a} + rac{1}{b} = rac{1}{f} = D$$
 — оптическая сила [дптр]

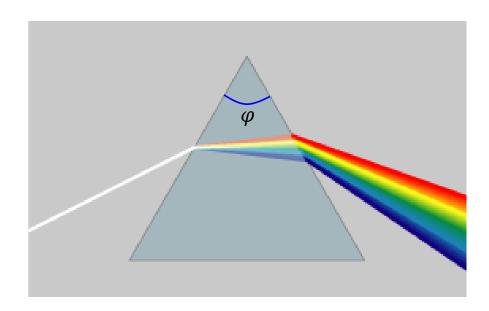
$$\Gamma = \frac{H}{h} = \frac{b}{a}$$
 — линейное увеличение

# РАССЕИВАЮЩАЯ ЛИНЗА





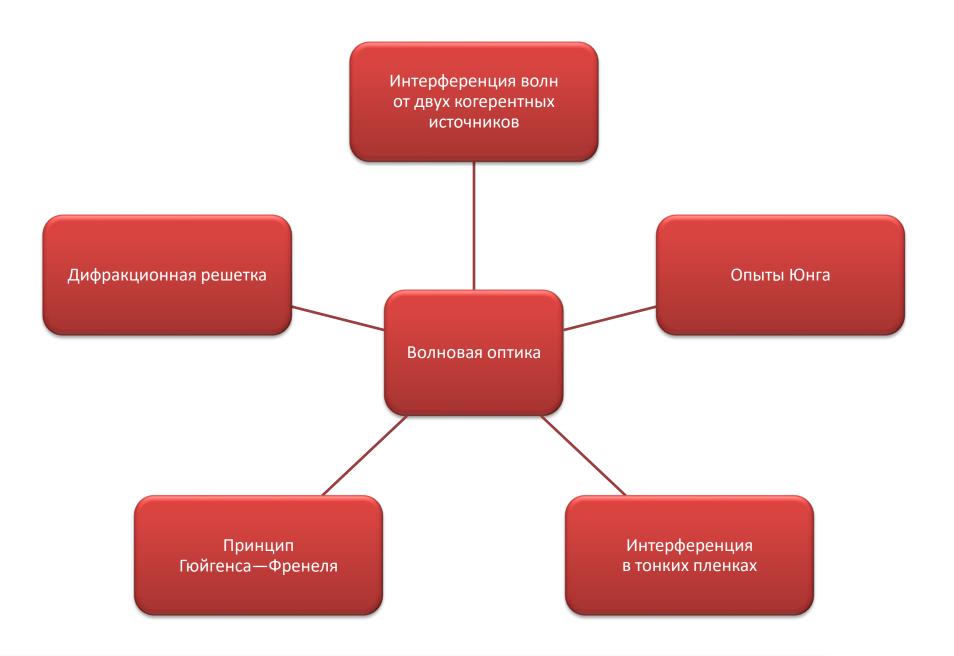
- > Луч, параллельный главной оптической оси, преломляясь в линзе, выходит как бы из мнимого главного фокуса.
- Луч, падающий в направлении мнимого главного фокуса, находящегося за линзой, после преломления в линзе идет параллельно главной оптической оси.
- Луч, идущий через оптический центр тонкой линзы, проходит через нее без преломления.
- Если пучок параллельных лучей падает на тонкую рассеивающую линзу под небольшим углом к главной оптической оси, то продолжения преломленных лучей пересекаются в одной точке фокальной плоскости, называемой побочным фокусом.


$$rac{1}{a} + rac{1}{b} = rac{1}{f} = D$$
 — оптическая сила [дптр]

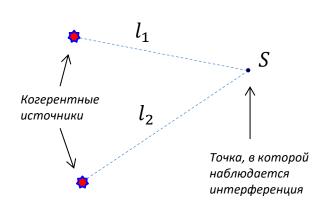
$$\Gamma = \frac{H}{h} = \frac{|b|}{a}$$
 – линейное увеличение

# ДИСПЕРСИЯ СВЕТА

**Дисперсия света** — зависимость скорости света в веществе (абсолютного показателя преломления) от частоты волны.


**При нормальной дисперсии** абсолютный показатель преломления среды возрастает с ростом частоты света (и соответственно убывает с ростом длины волны).




 $\varphi$  — преломляющий угол призмы;

 $\delta$  — угол отклонения луча, падающего на угол призмы, от первоначального направления.

$$\delta = \varphi(n-1)$$

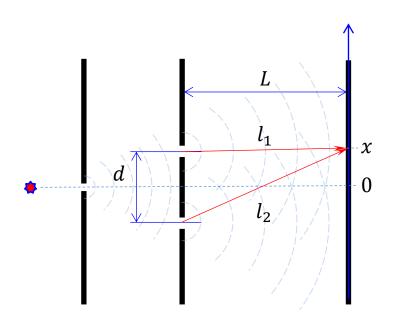


# ИНТЕРФЕРЕНЦИЯ ВОЛН ОТ ДВУХ КОГЕРЕНТНЫХ ИСТОЧНИКОВ



Интерференция — явление наложения волн, вследствие которого наблюдается устойчивое во времени усиление или ослабление результирующих колебаний в различных точках пространства.

Когерентные волны — волны с одинаковой частотой, поляризацией и постоянной разностью фаз.


Условие интерференционного максимума:  $l_1 - l_2 = n\lambda$ ,  $n \in \mathbb{Z}$ .

Условие интерференционного минимума:  $l_1 - l_2 = (2m+1)\frac{\lambda}{2}$ ,  $m \in \mathbb{Z}$ .

$$E_1(t) = E_m \sin\left(\omega t - \frac{2\pi l_1}{\lambda}\right); \qquad E_2(t) = E_m \sin\left(\omega t - \frac{2\pi l_2}{\lambda}\right);$$

$$E(t) = E_1(t) + E_2(t) = 2E_m \cos \frac{2\pi}{\lambda} (l_1 - l_2) \sin \left( \omega t - \frac{2\pi (l_1 + l_2)}{\lambda} \right)$$

### ОПЫТЫ ЮНГА

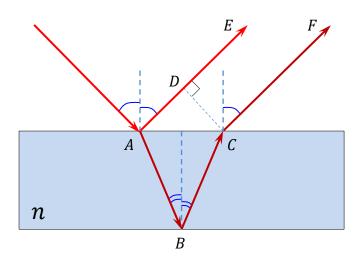


$$l_1 = \sqrt{L^2 + \left(x - \frac{d}{2}\right)^2}$$
;  $l_2 = \sqrt{L^2 + \left(x + \frac{d}{2}\right)^2}$ 

При условии 
$$L\gg x$$
,  $L\gg d$ :  $l_2-l_1=\frac{xd}{L}$ 

Условие интерференционных максимумов:

$$l_2 - l_1 = n\lambda \Rightarrow \frac{xd}{L} = n\lambda, n \in Z \Rightarrow x = n\frac{\lambda L}{d}$$


Координада x интерференционного максимума (светлой полосы на экране):

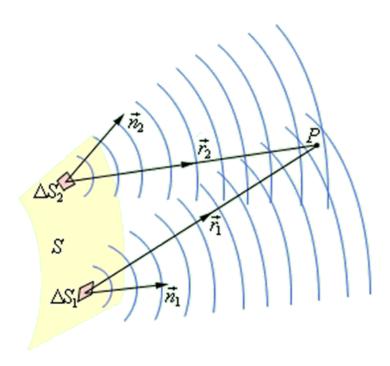
$$x = n \frac{\lambda L}{d}, n \in Z$$

Расстояние между двумя соседними максимумами (светлыми полосами на экране):

$$\Delta x = \frac{\lambda L}{d}$$

# ИНТЕРФЕРЕНЦИЯ В ТОНКИХ ПЛЕНКАХ




- ightharpoonup При отражении волны от оптически более плотной среды ее фаза изменяется скачком на  $\pi$  (оптический путь скачком изменяется на полволны).
- ightharpoonup Оптический путь в веществе в n раз больше геометрического (n абсолютный показатель преломления).
- ightharpoonup Разность оптических путей рассчитывается до общей нормали (CD).

 $\Delta = n(AB + BC) - AD \pm \lambda/2$  — оптическая разность хода когерентных лучей DE и CF.

Условие максимума отражения:  $\Delta = n\lambda$ ,  $n \in \mathbb{Z}$ .

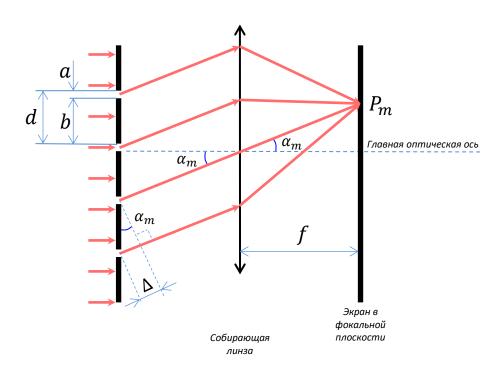
Условие минимума отражения:  $\Delta = (2m+1)\frac{\lambda}{2}, \qquad m \in Z.$ 

# ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ



**Дифракция света** — явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий

**Фронт волны** — это поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.


### Волновая поверхность (фазовая поверхность)

— геометрическое место точек, где колебания происходят в одинаковой фазе. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом.

### Принцип Гюйгенса-Френеля:

- каждый элемент волновой поверхности служит источником вторичной сферической волны;
- вторичные волны от одной волновой поверхности когерентны и имеют одинаковую начальную фазу;
- распространение волны при дифракции моделируется как результат интерференции вторичных волн.

# ДИФРАКЦИОННАЯ РЕШЕТКА




- $ightharpoonup Дифракционная решетка представляет собой совокупность <math>N\gg 1$  числа узких щелей шириной a, разделенных непрозрачными промежутками шириной b.
- ightharpoonup Величина d=a+b называется периодом решетки.
- ightharpoonup Характерные значения:  $N \sim 100000$ ,  $d \sim 1$  мкм.

Главные максимумы ( $P_m$ ) будут наблюдаться под углами  $\alpha_m$ , определяемыми условием:

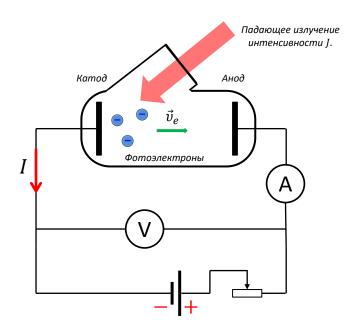
$$\Delta = d \sin \alpha_m = m\lambda$$
,

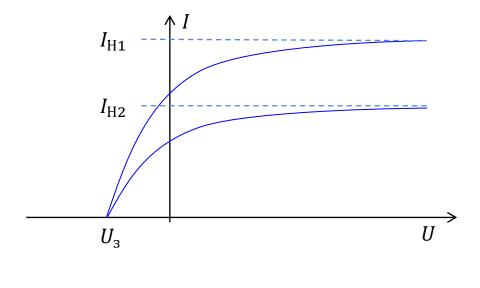
где 
$$m=0;\pm 1;\pm 2,...$$

|m| — порядок максимума.



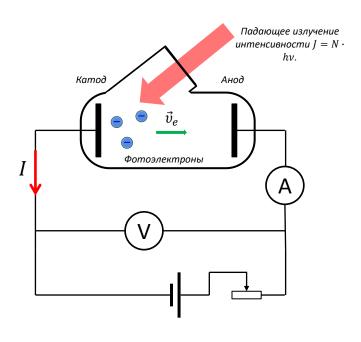
# КВАНТ СВЕТА (ФОТОН)


Фотон — микрочастица, квант электромагнитного излучения. Фотон обладает следующими свойствами:


- ightharpoonup Энергия фотона пропорциональна частоте электромагнитного излучения:  $E = h v = rac{h}{\tau} = rac{h c}{\lambda}$ .
- $\blacktriangleright$  Фотон электрически нейтральная частица (q=0).
- ightharpoonup Скорость фотона во всех системах отсчета равна скорости света  $c=3\cdot 10^8\,\,\mathrm{M/c}$  (в вакууме).
- ightharpoonup Масса покоя фотона равна нулю:  $m_0 = 0$ .
- ightharpoonup Релятивистская масса фотона определяется его энергией:  $m=rac{E}{c^2}=rac{h v}{c^2}.$
- ightharpoonup Фотон обладает импульсом:  $p=mc=rac{hv}{c}=rac{h}{\lambda}$  .

```
c=3\cdot 10^8\, м/с — скорость света в вакууме; h=6,6\cdot 10^{-34}\, Дж \cdot с — постоянная Планка; T — период колебаний световой волны [с]; \nu={}^1/_T — частота колебаний световой волны [Гц]; \lambda=c\cdot T — длина световой волны.
```

#### ЗАКОНЫ ФОТОЭФФЕКТА


Фотоэффект — явление вырывания электронов из твердых и жидких веществ под действием света.





- ightharpoonup Фототок насыщения  $I_{
  m H}$  прямо пропорционален интенсивности света J, падающего на катод :  $J_1 > J_2 \Rightarrow I_{
  m H1} > I_{
  m H2}$ .
- Максимальная кинетическая энергия фотоэлектронов линейно зависит от частоты света и не зависит от его интенсивности.
- Для каждого вещества существует минимальная частота света, называемая красной границей фотоэффекта, ниже которой фотоэффект невозможен.

# УРАВНЕНИЕ ЭЙНШТЕЙНА ДЛЯ ФОТОЭФФЕКТА



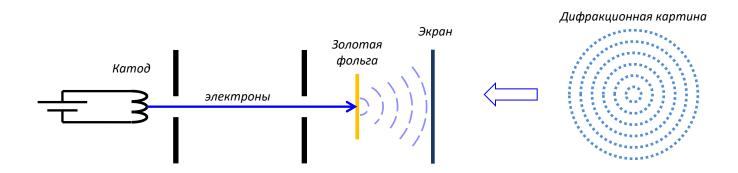
$$E_{\Phi} = A_{\text{\tiny BMX}} + E_k$$

- $ightharpoonup E_{\Phi} = h 
  u = rac{h}{T} = rac{h c}{\lambda}$  энергия фотона;
- $A_{\rm Bыx} = h v_{min} = \frac{hc}{\lambda_{max}}$  работа выхода минимальная работа, которую нужно совершить для удаления электрона из металла;
- $ightarrow E_k = rac{m_e v^2}{2} = rac{p_e^2}{2m_e} = U_3 e$  кинетическая энергия вылетающих электронов.

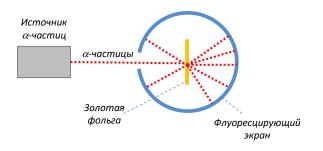
 $h=6.6\cdot 10^{-34}$  Дж · с — постоянная Планка;  $c=3\cdot 10^8$  м/с — скорость света в вакууме;  $m_e=9.1\cdot 10^{-31}$  кг — масса электрона;  $e=1.6\cdot 10^{-19}$  Кл — заряд электрона;  $\nu$  — частота излучения; T — период волны;

v — скорость электрона;  $p_e$  — импульс электрона;

 $u_{min}$  и  $\lambda_{max}$  — минимальная частота и максимальная длина волны, соответствующие красной границе фотоэффекта;


 $U_3$  — задерживающая разность потенциалов.

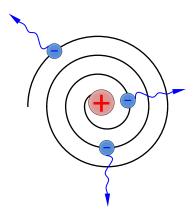
# ВОЛНЫ ДЕ БРОЙЛЯ


Любой частице, обладающей импульсом  $\vec{p}$ , соответствует длина волны де Бройля:

$$\lambda_{\mathrm{B}} = rac{h}{p}$$
, где  $h = 6$ ,6  $\cdot$   $10^{-34}$  Дж  $\cdot$  с  $-$  постоянная Планка.

Наличие волновых свойств у микрочастиц означает, что можно наблюдать их интерференцию и дифракцию. В 1927 г. волновые свойства электронов были обнаружены английским физиком Джозефом Томсоном в опытах по дифракции электронов при их прохождении сквозь золотую фольгу:




#### ПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА



Планетарная модель атома обоснована опытами Резерфорда по рассеянию α-частиц на золотой фольге

# ОСНОВНЫЕ ПОЛОЖЕНИЯ ПЛАНЕТАРНОЙ МОДЕЛИ АТОМА

- Атом состоит из положительно заряженного ядра, вокруг которого (подобно планетам, обращающимся вокруг Солнца) вращаются отрицательно заряженные электроны.
- ightharpoonup Линейный размер ядра ( $\sim 10^{-15}$  м) по крайней мере в сто тысяч раз меньше размера атома ( $1~{\rm \AA} = 10^{-10}$  м).
- > Атом электронейтрален: заряд ядра равен суммарному заряду электронов.
- Масса атома сосредоточена в его ядре: масса ядра много больше массы электронов.



Планетарная модель атома не позволяет объяснить устойчивость атомов. Электроны, вращающиеся вокруг ядра, обладают центростремительным ускорением, а ускоренно движущийся заряд излучает электромагнитные волны. Теряя энергию на излучение, электроны должны упасть на ядро (подобно тому, как искусственный спутник падает на Землю в результате трения о воздух в атмосфере), а атом прекратить существование.

#### ПОСТУЛАТЫ БОРА

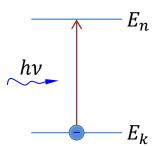
# Первый постулат Бора

В устойчивом атоме электрон может двигаться лишь по особым, стационарным орбитам, не излучая при этом электромагнитной энергии.

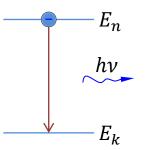
# Правило квантования орбит Бора

На длине окружности каждой стационарной орбиты укладывается целое число n длин волн де Бройля  $\lambda_{\rm B}=\frac{h}{p_e}=\frac{h}{m_e v}$ , соответствующих движению электрона:  $\frac{2\pi r_n}{\lambda_{\rm B}}=n$ , где  $n\in N$  – главное квантовое число .

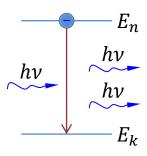
$$\frac{2\pi r_n}{\lambda_{\rm E}}=n, \frac{2\pi r_n}{h/m_e v}=n\Rightarrow m_e v r_n=n \frac{h}{2\pi}=n\hbar$$
, где  $\hbar=\frac{h}{2\pi}=1.05\cdot 10^{-34}$  Дж  $\cdot$  с


# Второй постулат Бора

Излучение света атомом происходит при переходе атома из стационарного состояния с большей энергией  $E_k$  в стационарное состояние с меньшей энергией  $E_n$ .


Энергия излученного фотона:  $h\nu_{kn}=E_k-E_n$ .

# СПЕКТРАЛЬНЫЕ ПЕРЕХОДЫ


электромагнитной Поглощение кванта энергии, сопровождающееся переходом электрона с низкого на более высокий энергетический уровень.



Спонтанное излучение — испускание кванта электромагнитного излучения при случайном переходе электрона в атоме с высокого на низкий энергетический уровень.



Вынужденное (индуцированное) излучение — испускание кванта электромагнитного излучения при переходе электрона в атоме с высокого на низкий энергетический уровень под действием внешнего (вынуждающего) излучения — лежит в основе работы лазеров.



Во всех случаях  $h\nu = E_n - E_k$ 


# АТОМ ВОДОРОДА

$$\begin{cases} m_e v r_n = n\hbar \\ m_e \frac{v^2}{r_n} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r_n^2} \Rightarrow r_n = \frac{4\pi\varepsilon_0 \hbar^2}{m_e e^2} \cdot n^2, v = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{\hbar} \frac{1}{n} \end{cases}$$

$$E_{kn} = \frac{m_e v^2}{2} = \frac{m_e e^4}{8 \cdot \varepsilon_0^2 h^2} \cdot \frac{1}{n^2}, \qquad E_{pn} = -\frac{1}{4\pi \varepsilon_0} \frac{e^2}{r_n} = -\frac{m_e e^4}{4 \cdot \varepsilon_0^2 h^2} \cdot \frac{1}{n^2}$$

$$E_n = E_{kn} + E_{pn} = -\frac{m_e e^4}{8 \cdot \varepsilon_0^2 h^2} \cdot \frac{1}{n^2} = -2,18 \cdot 10^{-18} \cdot \frac{1}{n^2}$$
 Дж =  $-13,6 \cdot \frac{1}{n^2}$  эВ

$$\nu_{kn} = \frac{E_k - E_n}{h} = \frac{m_e e^4}{8 \cdot \varepsilon_0^2 h^3} \left( \frac{1}{n^2} - \frac{1}{k^2} \right)$$



# НУКЛОННАЯ МОДЕЛЬ ЯДРА

 $_{Z}^{A}X$  — обозначение атомного ядра;

A — число протонов и нейтронов в ядре (атомное число);

Z— число протонов в ядре (атомный номер).

**Изотопы** — ядра одного и того же химического элемента, отличающиеся числом нейтронов в ядре.

**Нуклоны** — общее название частиц, входящих в состав атомного ядра. К нуклонам относятся протоны и нейтроны.

**Протон** — положительно заряженная частица.

Нейтрон — незаряженная частица.

#### СУБАТОМНЫЕ ЧАСТИЦЫ

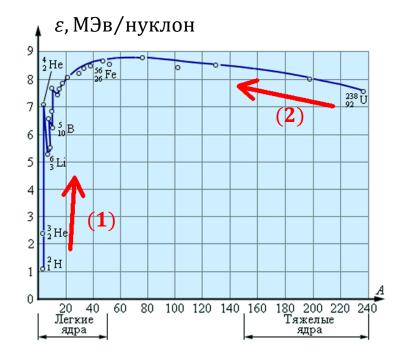
| Частица  | Macca                     | Заряд                      |
|----------|---------------------------|----------------------------|
| Протон   | $9,1\cdot 10^{-31}$ кг    | 1,6 · 10 <sup>-19</sup> Кл |
| Нейтрон  | $1,673 \cdot 10^{-27}$ кг | 0                          |
| Электрон | $1,675 \cdot 10^{-27}$ кг | $-1$ ,6 · $10^{-19}$ Кл    |

#### ЭНЕРГИЯ СВЯЗИ

$$\Delta m = (Z \cdot m_p + (A - Z)m_n) - M$$

 $\Delta m$  — дефект массы ядра  $_{Z}^{A}X$  — показывает, насколько масса свободных протонов и нейтронов больше массы ядра атома, которое они образуют.

 $m_{p}$  – масса протона


 $m_n$  — масса нейтрона

M — масса ядра

 $E = \Delta m \cdot c^2$  — энергия связи — энергия, которая выделяется при образовании атомного ядра из свободных протонов и нейтронов.

 $\varepsilon = \frac{E}{A}$  — удельная энергия связи — энергия связи, приходящаяся на один нуклон.

# Зависимость удельной энергии связи от атомного числа



Энергетически возможны два вида ядерных превращений:

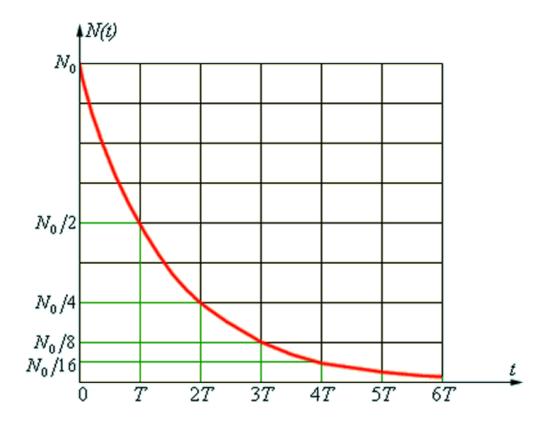
- (1) синтез легких ядер;
- (2) деление тяжелых.

# РАДИОАКТИВНОСТЬ

**Радиоактивность** — явление самопроизвольного превращения одних ядер в другие с испусканием различных частиц.

**Альфа-распад** — спонтанное превращение радиоактивного ядра в новое ядро с испусканием  $\alpha$ -частицы (ядра атома гелия  ${}^4_2He$  ):

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$$


**Бета-распад** — спонтанное превращение радиоактивного ядра в новое ядро с испусканием электрона  $\binom{0}{-1}e$ ) и антинейтрино  $(\tilde{\nu}_e)$ :

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + _{-1}^{0}e + \tilde{\nu}_{e}$$

Суммарное атомное число (A) и суммарный заряд (Z) сохраняются в ходе любых ядерных превращений!

# ЗАКОН РАДИОАКТИВНОГО РАСПАДА

Период полураспада T — промежуток времени, за который распадется половина первоначального числа атомов  $N_0$ .



$$N(t) = N_0 \cdot 2^{-t/T}$$

# ЯДЕРНЫЕ РЕАКЦИИ

Ядерные реакции — это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с  $\gamma$ -квантами) или друг с другом. Пример:  ${}^7_3Li+{}^1_1H \to {}^4_2He+{}^4_2He$ .

Энергетическим выходом ядерной реакции называется разность энергий покоя ядер и частиц до реакции и после реакции:

$$E = \Delta m \cdot c^2, \ \Delta m = M_1 - M_2,$$

где  $M_1$  — масса покоя частиц до реакции,  $M_2$  — после,  $\Delta m$  — убыль массы покоя частиц, c — скорость света в вакууме.

Согласно закону сохранения энергии энергетический выход ядерной реакции равен изменению кинетической энергии частиц — участников реакции:

$$E_{2K} - E_{1K} = \Delta m \cdot c^2$$

Если кинетическая энергия ядер и частиц после реакции  $E_{2K}$  больше, чем до реакции  $E_{1K}$ , то говорят о выделении энергии. В противном случае реакция идет с поглощением энергии.

Суммарное атомное число (A) и суммарный заряд (Z) сохраняются в ходе любых ядерных реакций!